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Abstract—The Residue Number System is a widely used non-
positional number system. Residue Number System can be
effectively used in applications and systems with a predominant
share of addition, subtraction and multiplication operations,
due to the parallel bit-by-bit execution of operations and the
absence of inter-bit carries. The reverse conversion of a number
from Residue Number System to positional notation requires
the use of special algorithms. The main focus of this article lies
in introducing the new conversion method, which incorporates
Chinese Remainder Theorem, Akushsky Core Function and rank
of number. The step-by-step procedure of the conversion process
is detailed, accompanied by numerical examples to demonstrate
the effectiveness of the proposed method. The proof of the
relationship between the ranks of positional characteristics using
the Chinese Remainder Theorem is presented. Through careful
analysis and comparison with existing transformation methods,
it is concluded that the presented approach takes on average 8%
less time than the Approximate Method.

Index Terms—residue number system, Chinese remainder
theorem, approximate method, Akushsky core functions, non-
modular operations

I. INTRODUCTION

In today’s world, where computational systems play an
increasingly significant role in various fields of activity, the
question of efficiently converting numbers between different
numeral systems becomes particularly relevant. One such
system is the Residue Number System (RNS), which provides
unique capabilities for handling large numbers through parallel
computations [1]. RNS is applied in the following areas:
blockchain [2], homomorphic encryption [3], digital signal and
image processing [4], neural networks [5].

However, there are cases where it is necessary to translate
numbers from RNS to positional notation, which is commonly
used in most computational devices [6]. Efficient methods for
converting numbers from RNS to positional notation must be
developed.

In [7] the authors introduced a technique based on the
Chinese Remainder Theorem (CRT) and employed optimized
modular arithmetic operations to achieve faster conversions.
The algorithm was evaluated on a variety of RNS moduli sets
and demonstrated significant improvements in conversion time
compared to previously known methods.

The research was supported by the Russian Science Foundation Grant No.
19-71-10033, https://rscf.ru/en/project/19-71-10033/.

Chervyakov et al. [8] focused on developing a hybrid
conversion method that combines RNS and binary arithmetic
to achieve more efficient conversions. The proposed method
utilized operand scanning techniques to identify patterns in the
RNS representation and optimize the conversion process. The
authors demonstrated that their hybrid approach outperforms
conventional conversion methods in terms of both speed and
hardware resource utilization.

The article [9] focuses on hardware acceleration for RNS-
to-decimal conversion using Field-Programmable Gate Ar-
rays (FPGAs). The authors designed a specialized hardware
accelerator capable of handling large-scale RNS numbers
and converting them efficiently to decimal format. The pro-
posed FPGA-based implementation demonstrated substantial
speedup compared to software-based conversion methods,
making it suitable for real-time applications.

In [10], [11] proposed energy efficient conversion algo-
rithms which minimizes the energy consumption in the process
of number conversion and number sign determination. By
optimizing the use of resources and considering the power
constraints of the base equipment, the proposed methods
provide significant energy savings compared to conventional
conversion methods.

Advances in this area have paved the way for improved
performance, reduced power consumption and increased fault
tolerance, making RNS a more attractive option in various
domains [12]. However, further research is still warranted to
explore new techniques and optimizations that can further
enhance the conversion process and maximize the potential
of RNS in modern computing systems. This paper researches
methods of converting numbers from RNS to the positional
notation. The main methods are the CRT based method, the
Interval Method, the Mixed Radix Conversion (MRC) method,
the Diagonal Function (DF) method and the Approximate
Method.

The purpose of this paper is to present a high-speed method
for converting numbers from RNS to positional notation based
on the use of Akushsky core function and number rank.

The paper is organised as follows. In Section 2, we give
a brief overview of the Residue Number System. In Section
3, various techniques for converting numbers from RNS to
positional notation are described. Section 4 deals with perfor-
mance evaluation. Finally, Section 5 concludes with some final



thoughts and considerations, including possible directions for
future research.

II. RESIDUE NUMBER SYSTEM

In RNS, numbers are expressed as sets of residues obtained
by performing modular arithmetic operations on those num-
bers with respect to a set of coprime moduli. The use of
coprime moduli ensures that there is no overlap or interference
between the residues, allowing for parallel computation of
operations on individual residues [12].

The numerical representation in RNS utilises the Chinese
Remainder Theorem. Let {p1, p2, ..., pn} be mutually prime
moduli, and P = p1 · p2 · ... · pn be their product. For
each number x, there exists a set of remainders x1, x2, ..., xn,
where 0 ≤ xi < pi, and these remainders form the RNS
representation of X . Put differently, X exhibits congruence
with the residues xi modulo pi.

Mathematically, this can be expressed as:

xi ≡ X (mod pi) (1)

Thus, the number X is written in the RNS in the following
form:

X = (x1, x2, . . . , xn) . (2)

The computations for the reductions xi can be derived
through the application of the following equation:

xi = X −
⌈
X

pi

⌉
· pi. (3)

To perform operations on numbers in RNS, such as addition
and multiplication, operations are carried out independently on
the remainders of each modulo. For example, calculations in
RNS are performed according to equation:

A ∗B = (a1 ∗ b1, a1 ∗ b1, ..., an ∗ bn) .

Here, the symbol ∗ represents arithmetic operations, encom-
passing addition (+), subtraction (−), or multiplication (·).
Note that each modulo within the RNS is coprime with every
other modulo, satisfying the condition: gcd (pi, pj) = 1, where
i ̸= j.

III. METHODS FOR CONVERSION NUMBERS FROM RNS
TO POSITIONAL NOTATION

A. Chinese Remainder Theorem

If the number X is given as residues (x1, x2, ..., xn) from
division by moduli {p1, p2, ..., pn}, the number X can be
obtained from the equation based on the CRT [9]:

X =

∣∣∣∣∣
n∑

i=1

Pi · xi ·
∣∣P−1

i

∣∣
pi

∣∣∣∣∣
P

=

=

n∑
i=1

Pi · xi ·
∣∣P−1

i

∣∣
pi

− r (X) · P.
(4)

where P is the dynamic range, Pi = P
pi

,
∣∣P−1

i

∣∣
pi

is the
multiplicative inversion of Pi modulo pi, and the operator
|X|pi

denotes the remainder of division X by pi, that is

X mod pi and r (X) is the rank of the number indicating
how many times the range value must be subtracted from
the resulting number to bring it back into the range. Let us
consider the process of number reconstruction as an example.

Example 1. Given a system of bases p1 = 2, p2 = 3, p3 =
5, p4 = 7, p5 = 11 the volume of the dynamic range P =
2 · 3 · 5 · 7 · 11 = 2310. Convert the number X = (1, 2, 1, 4, 7)
to a positional system.

For this purpose, find the values of Pi:

P1 =
P

p1
= 1155, P2 =

P

p2
= 770, P3 =

P

p3
= 462,

P4 =
P

p4
= 330, P5 =

P

p5
= 210.

Subsequently, our focus turns to the computation of multi-
plicative inversion, a process entailing the determination of α
such that α · Pi ≡ 1 mod pi. Thus:∣∣P−1

1

∣∣
p1

= 1,
∣∣P−1

2

∣∣
p2

= 2,
∣∣P−1

3

∣∣
p3

= 3,∣∣P−1
4

∣∣
p4

= 1,
∣∣P−1

5

∣∣
p5

= 1.

With these values, we can calculate the value of the number
X , according to the (4):

X = |8411|2310 = 1481.

B. Approximate Method Based on CRT

In [10], [13] a fractional, approximate representation of
numbers based on CRT is proposed. Let us divide (4) by P
and obtain

X

P
=

∣∣∣∣∣
n∑

i=1

xi ·

∣∣Pi
−1

∣∣
pi

pi

∣∣∣∣∣
1

=

∣∣∣∣∣
n∑

i=1

xi · ki

∣∣∣∣∣
1

. (5)

where ki =
|Pi

−1|
pi

pi
constants of the chosen system, and the

(5) gives a result within the interval [0, 1). In this context, the
process of determining the remainder with a larger modulo
is replaced by simply discarding the integer part, a simple
operation to implement. To get the exact value, the fractional
part is multiplied by P . Consider a similar example.

Example 2. Given a system of bases p1 = 2, p2 = 3, p3 =
5, p4 = 7, p5 = 11 and the number X = (1, 2, 1, 4, 7). Find
the constants ki:

k1 =
1

2
, k2 =

2

3
, k3 =

3

5
, k4 =

1

7
, k5 =

1

11
.

Then by (5) it is easy to find:

X

P
=

∣∣∣∣1 · 12 + 2 · 2
3
+ 1 · 3

5
+ 4 · 1

7
+ 7 · 1

11

∣∣∣∣
1

=

=

∣∣∣∣1 52

105

∣∣∣∣
1

=
52

105
,

Hence
X =

52

105
· 2310 = 1481.



Obviously, these calculations are simpler than in the CRT-
based method, but in hardware calculations the fractional coef-
ficients ki can rarely be represented as finite fractions, so there
is a question of rounding accuracy. To perform approximate
calculations the fractional coefficients ki are multiplied by 2N ,
where N signifies the count of binary digits located beyond the
decimal point, which provides the required level of calculation
accuracy, each resulting number is rounded up to the next
integer and then all calculations are performed modulo 2N .

C. Mixed Radix Conversion Method

The Mixed Radix Conversion technique involves system-
atically translating a numerical representation from RNS to
Weighted Number System (WNS) through a sequential process
[14].This method involves subtracting moduli and multiplying
by the multiplicative inversion of a modulo. In WNS the
translated number has the following form:

X = d1 + x1p1 + d2p1p2 + ...+ dnp1p2...pn−1, (6)

where 0 ≤ di ≤ (pi+1 − 1). The parameters di are known as
WNS digits.

The WNS digits can be obtained from the ratios:

d1 = X −X1 · p1, X1 =

⌈
X

p1

⌉
d2 = X1 −X2 · p2, X2 =

⌈
X1

p2

⌉
...

dn = Xn−1 −Xn · pn, Xn =

⌈
Xn−1

pn

⌉
.

(7)

The conversion carried out according to the algorithm
(7) contains 2(n − 1) only residual arithmetic operations
of subtraction and division without remainder, where is the
number of moduli of the system. Some modification of the
considered algorithm can be proposed in the sense that the
division operation is replaced by the multiplication operation.
For this purpose we pre-calculate constants τkj that satisfy the
condition

τkjpk ≡ 1 (mod pj), (1 ≤ k < j ≤ n). (8)

It is noteworthy to highlight that the constants τkj are
entirely dictated by the selected system of bases, rendering
them computable beforehand and amenable to storage in a
designated table.

If the constants τkj are calculated, the calculation of the
digits di WNS by the algorithm (6) can be rewritten in the
form:

d1 ≡ x1 (mod p1),

d2 ≡ (x2 − d1)τ12 (mod p2),

d3 ≡ ((x3 − d1)τ13 − d2)τ23 (mod p3),

...
dn ≡ ((...(xn − d1)τ1n − ...dn−1)τn−1n (mod pn).

(9)

The constants τkj are multiplication inverses for the num-
bers pk modulo pj .

Consider the algorithm (9) with an example.
Example 3. Let a system of bases p1 = 2, p2 = 3, p3 =

5, p4 = 7, p5 = 11 be given. The volume of the dynamic
range P = 2 · 3 · 5 · 7 · 11 = 2310. Convert the number
X = (1, 2, 1, 4, 7) to WNS.

We first find the constants τkj . For convenience, we write
the constants τkj as a matrix k × j:

0 2 3 4 6
0 0 2 5 4
0 0 0 3 9
0 0 0 0 8


Now run the algorithm (9) and write the results in Tab. I.
Thus,

X = d5p1p2p3p4 + d4p1p2p3 + d3p1p2 + d2p1 + d1 =

= 7 · 2 · 3 · 5 · 7 + 0 · 2 · 3 · 5 + 1 · 2 · 3 + 2 · 2 + 1 = 1481.

D. Interval Method

Sufficiently effective methods of converting numbers from
RNS to positional representation is the interval method, based
on the interval characteristics of numbers. One of these char-
acteristics is the interval number [15].

Let RNS is given by a system of bases p1, p2, ..., pn, with
the volume of the range P =

∏n
i=1 pi. Choose a splitting

modulo pi and split the given range into intervals by dividing
P by the modulo pi. Then the number of intervals is m =
Pi = P

pi
, and the length of an interval is determined by the

modulo value. As a result, the value of any number X given
in RNS on the chosen bases can be determined by the interval
number:

lX =

⌈
X

pi

⌉
, (10)

which contains the number X and by digit xi of the number
X in the RNS modulo pi, i.e.

X = pilX + xi. (11)

Since gcd(pi, Pi) = 1, by Euler’s theorem:

P
φ(pi)
i ≡ 1 (mod pi), (12)

where φ(pi) is an Euler function. If pi is a prime number,
then φ(pi) = pi − 1.

Substituting (12) into (4) the number X can be written as

X =

∣∣∣∣∣
n∑

i=1

P
φ(pi)
i xi

∣∣∣∣∣
P

. (13)

To determine the interval number lX , substitute (13) into
(10):

lX =

⌈∑n
i=1 P

φ(pi)
i xi − r (X)P

pi

⌉
. (14)



TABLE I: Algorithm of the MRC method

Actions Moduli Digits
p1 = 2 p2 = 3 p3 = 5 p4 = 7 p5 = 11

X − d1
1 2 1 4 7

d1 = 1
1 1 1 1 1

(X − d1) · τ1j
0 1 0 3 6

2 3 4 6

X1 − d2
2 0 5 3

d2 = 2
2 2 2 2

(X1 − d2) · τ2j
0 3 3 1

2 5 4

X2 − d3
1 1 4

d3 = 1
1 1 1

(X2 − d3) · τ3j
0 0 3

3 9

X3 − d4
0 5

d4 = 0
0 0

(X3 − d4) · τ4j
0 5

8

X4
7

d5 = 7

Since pi is a divisor of the numbers Pφ(pj)
j (i ̸= j), Pφ(pi)

i −
1, P then

lX = lX1
x1 + lX2

x2 + ...+ lXn
xn − rXP, (15)

where lXj
=

P
φ(pj)

j

pi
, i ̸= j and lXj

=
P

φ(pi)

i −1

pi
are constant

coefficients defined by the base system.
Thus we have,

lX =

∣∣∣∣∣
n∑

i=1

|lXi
xi|+Pi

∣∣∣∣∣
+

Pi

. (16)

Substituting (16) into (11), we obtain a positional notation
of the number X:

X =

∣∣∣∣∣
n∑

i=1

|lXixi|+Pi

∣∣∣∣∣
+

Pi

 pi + xi. (17)

It may be noted here that it is more appropriate to choose
the largest modulo in the system as the split modulo. In this
case, modular operations are performed with a smaller modulo
value.

We will illustrate this method with an example.
Example 4. Let a system of bases p1 = 2, p2 = 3, p3 =

5, p4 = 7, p5 = 11 be given. Convert the number X =
(1, 2, 1, 4, 7) to a positional notation. Let us choose p5 = 11
as the splitting modulo, then P5 = P

p5
= 210, the interval

number

lX =

∣∣∣∣∣
5∑

i=1

|lXixi|+210

∣∣∣∣∣
+

210

.

and the number X = p5lX + x5. Define lXi . Since φ(p1) =
2 − 1 = 1, φ(p2) = 3 − 1 = 2, φ(p3) = 5 − 1 = 4, φ(p4) =
7− 1 = 6, φ(p4) = 11− 1 = 10, then

lX1
=

∣∣∣∣115511

∣∣∣∣+
210

= 105, lX2
=

∣∣∣∣770211

∣∣∣∣+
210

= 140,

lX3
=

∣∣∣∣462411

∣∣∣∣+
210

= 126, lX4
=

∣∣∣∣330611

∣∣∣∣+
210

= 30,

lX5 =

∣∣∣∣21010 − 1

11

∣∣∣∣+
210

= 19.

Then lX = |764|+210 = 134.
Thus, X = 134 · 11 + 7 = 1481.

E. Diagonal Function

There is another way of reconstructing the numbers in the
literature [16], [17]. For RNS {p1, p2, ..., pn} define the Sum
of Quotients (SQ) parameter as

SQ = P1 + P2 + ...+ Pn, (18)

and the constants
ki =

∣∣−p−1
i

∣∣
SQ

. (19)

The diagonal function for a given number X =
(x1, x2, ..., xn) is defined as

D (X) = |x1k1 + x2k2 + ...+ xnkn|SQ . (20)

If (4) is multiplied by SQ
P , we get the scaled value of X:

X · SQ
P

=

∣∣∣∣∣
n∑

i=1

SQ · xi

pi
·
∣∣Pi

−1
∣∣
pi

∣∣∣∣∣
SQ

. (21)

From the definition of ki (19) we can derive βi · SQ −
kipi = 1, where βi =

∣∣SQ−1
∣∣
pi

, which is equivalent to βi =∣∣Pi
−1

∣∣
pi

. Thus, ki = SQ
pi

· |Pi|pi
− 1

pi
, where SQ

pi
·
∣∣P−1

i

∣∣
pi

=

ki+
1
pi

. Then substituting ki+
1
pi

in (20) instead of ki we get
the scaled value of D′ (X). Thus, to obtain the value of X,
substitute the calculated values in (21) and multiply by P

SQ .

X =
P

SQ
·

∣∣∣∣∣
n∑

i=1

xi

(
ki +

1

pi

)∣∣∣∣∣
SQ

. (22)

Consider this method with an example.



Example 5. Similarly, we are given RNS (2, 3, 5, 7, 11)
and a number X = 1481 = (1, 2, 1, 4, 7). From the previous
examples we know P = 2310, P1 = 1155, P2 = 770, P3 =
462, P4 = 330, P5 = 210. Then SQ = 2927 and from (18)
k1 = 1463, k2 = 1951, k3 = 1756, k4 = 418, k5 = 266. Find
the diagonal function

D (X) = |10655|2927 = 1874,

From (22) find the required value:

X =
4334887

2927
= 1481.

IV. THE AKUSHSKY CORE FUNCTION METHOD BASED ON
THE RANK OF NUMBER

We present a fast technique for conversion numerical values
from the RNS to positional notation. This approach involves
using the Akushsky Core Function to find the rank of a
number. The Akushsky Core Function [18] is defined by the
following equation

C (X) =

n∑
i=1

wi

⌊
X

pi

⌋
. (23)

where integers wi are constants determined by the choice
of the interpolation point. The numbers wi in equation (23)
can be arbitrary in a certain sense. It is they that define
each particular core function and can vary depending on
the problem to be solved. An algorithm for determining the
optimal weights for the Akushsky core function is presented
in [19].

Core function range value is calculated as

C (P ) = CP =

n∑
i=1

wiPi. (24)

We define the so-called orthogonal bases Bi as

Bi = Pi ·
∣∣P−1

i

∣∣
pi
,

We also define the coefficients ci as

ci = C (Bi) ,

Rewrite (23) as

C (X) =

∣∣∣∣∣
n∑

i=1

cixi

∣∣∣∣∣
CP

=

n∑
i=1

ci · xi − ř (X) · CP , (25)

Then the rank of the Akushsky core function number can
be defined as

ř (X) =

⌊∑n
i=1 ci · xi

CP

⌋
. (26)

There are three forms of representation of the CRT, each of
them corresponds to a positional characteristic of the number
represented in RNS.

The first form was represented in (4), the rank of a number
in this representation can be calculated as follows

r (X) =

⌊
n∑

i=1

1

pi
·
∣∣P−1

i

∣∣
pi

· xi

⌋
. (27)

Second form

X =

∣∣∣∣∣
n∑

i=1

Pi ·
∣∣∣∣∣P−1

i

∣∣
pi

· xi

∣∣∣
pi

∣∣∣∣∣
P

=

=

n∑
i=1

Pi ·
∣∣∣∣∣P−1

i

∣∣
pi

· xi

∣∣∣
pi

− r̂ (X) · P,
(28)

where r̂ (X) is the normalised rank of the number, which can
be calculated as

r̂ (X) =

⌊
n∑

i=1

1

pi
·
∣∣∣∣∣P−1

i

∣∣
pi

· xi

∣∣∣
pi

⌋
. (29)

The third form is proposed and its rank is represented
respectively in (25) and (26).

Consider the following properties.

Theorem 1: r̂ (X) = −X
P +

∑n
i=1

∣∣∣∣|P−1
i |

pi
·xi

∣∣∣∣
pi

pi
.

Proof: According to the definition

r̂ (X) =

 n∑
i=1

∣∣∣∣∣P−1
i

∣∣
pi

· xi

∣∣∣
pi

pi

 =

=

⌊
1

P

n∑
i=1

∣∣∣∣∣P−1
i

∣∣
pi

· xi

∣∣∣
pi

· Pi

⌋
.

(30)

Since
⌊
X
P

⌋
= X

P − |X|P
P , then

r̂ (X) =
1

P

n∑
i=1

∣∣∣∣∣P−1
i

∣∣
pi

· xi

∣∣∣
pi

· Pi−

− 1

P
·

∣∣∣∣∣
n∑

i=1

∣∣∣∣∣P−1
i

∣∣
pi

· xi

∣∣∣
pi

· Pi

∣∣∣∣∣
P

.

According to the CRT,
∣∣∣∣∑n

i=1

∣∣∣∣∣P−1
i

∣∣
pi

· xi

∣∣∣
pi

· Pi

∣∣∣∣
P

= X ,

consequently,

r̂ (X) =
1

P

n∑
i=1

∣∣∣∣∣P−1
i

∣∣
pi

· xi

∣∣∣
pi

· Pi −
X

P
.

The theorem is proved.

Theorem 2: r̂ (1) = − 1
P +

∑n
i=1

|P−1
i |

pi

pi
.

Proof: It follows directly from Theorem 1 that r̂ (1) =

− 1
P +

∑n
i=1

|P−1
i |

pi

pi
.

The theorem is proved.
Let us examine the correlation between the ranks of positional
characteristics.

Theorem 3: Let p1 < p2 < . . . < pn, the number
X

RNS−−−→ (x1, x2, . . . , xn) and the weights of the Akushsky
core function w1, w2, . . . , wn satisfying the condition 0 ≤
X < P , then

ř (X) = r (X) +

⌊
C (X)

CP

⌋
. (31)



Proof: Let us calculate ci, we get

ci = C (Bi) =

n∑
j=1

wj

⌊∣∣P−1
i

∣∣
pi

· Pi

pj

⌋
. (32)

Since ∀i ̸= j:
∣∣P−1

i

∣∣
pi

· Pi ≡ 0 mod pj and ∀i:
∣∣P−1

i

∣∣
pi

·
Pi ≡ 1 mod pi, then for i ̸= j:

⌊∣∣P−1
i

∣∣
pi

· Pi/pi

⌋
=

|P−1
i |

pi
·Pi

pi
, and for i = j:

⌊∣∣P−1
i

∣∣
pi

· Pi/pi

⌋
=

|P−1
i |

pi
·Pi−1

pi
,

hence the coefficient ci can be represented as follows

ci =
∣∣P−1

i

∣∣
pi

· Pi ·
n∑

j=1

wj

pj
− wi

pi
. (33)

Given that
∑n

j=1
wj

pj
= CP

P , then (33) is transformed to the
form

ř (X) =

⌊∑n
i=1 ci · xi

CP

⌋
=

=

⌊
1

P
·

n∑
i=1

∣∣P−1
i

∣∣
pi

· Pi · xi −
1

CP
·

n∑
i=1

xi · wi

pi

⌋
.

(34)

Substituting (34) into (28), we obtain

ř (X) =

⌊
r (X) +

X

P
− 1

CP
·

n∑
i=1

xi · wi

pi

⌋
. (35)

Considering that

n∑
i=1

xi · wi

pi
=

n∑
i=1

(
X − pi ·

⌊
X
pi

⌋)
· wi

pi

= X ·
n∑

i=1

wi

pi
−

n∑
i=1

⌊
X

pi

⌋
· wi

= X · CP

P
− C (X) .

(36)

Substituting (36) into (35), we obtain

ř (X) =

⌊
r (X) +

C (X)

CP

⌋
. (37)

Since as r (X) ∈ Z, and ∀a ∈ R, n ∈ Z: ⌊a+n⌋ = ⌊a⌋+n,
then

ř (X) = r (X) +

⌊
C (X)

CP

⌋
. (38)

The theorem is proved.
Theorem 4: Let p1 < p2 < · · · < pn, a number X ∈ ZP

and an Akushsky core function with with all positive weights
wi be given, then ř (X) = r (X).

Proof: According to Theorem 3, ř (X) = r (X) +⌊
C(X)
CP

⌋
. Given that the Akushsky core function contains no

critical cores, ∀X ∈ [0, P ): 0 ≤ C (X) < CP . Hence⌊
C(X)
CP

⌋
= 0, and hence ř (X) = r (X).

The theorem is proved.
Let us consider our proposed method with an example.

Example 6. Similarly, we are given RNS p1 = 2, p2 =
3, p3 = 5, p4 = 7, p5 = 11 and a number X = 1481 =

(1, 2, 1, 4, 7). P = 2310, P1 = 1155, P2 = 770, P3 =
462, P4 = 330, P5 = 210. Let us use a set of weights
w1 = 0, w2 = 0, w3 = 0, w4 = 0, w5 = 1.

Let us calculate the values of Bi:

B1 = P1 ·
∣∣P−1

1

∣∣ = 1155, B2 = P2 ·
∣∣P−1

2

∣∣ = 1540,

B3 = P3 ·
∣∣P−1

3

∣∣ = 1386, B4 = P4 ·
∣∣P−1

4

∣∣ = 330,

B5 = P5 ·
∣∣P−1

5

∣∣ = 210.

Then we find the value of the core function range by (24)

C (P ) = CP = 210.

Find the value of coefficients ci:

c1 = 105, c2 = 140, c3 = 126, c4 = 30, c5 = 19.

Then the rank of the number is

ř (X) =

⌊
105 · 1 + 140 · 2 + 126 · 1 + 30 · 4 + 19 · 7

210

⌋
= 3.

Thus,

X = 1155·1+1540·2+1386·1+330·4+210·7−3·2310 = 1481.

V. PERFORMANCE EVALUATION

The methodology expounded in Section 4 evinces an in-
disputable advantage over the approaches outlined in Section
3.

To validate the properties of each approach, every algorithm
was carefully implemented in Python, and a comprehensive
performance analysis was executed on a computer equipped
with an Intel Core i7-7700HQ processor running at 2.80
GHz, 8 GB DDR4 RAM at 1196 MHz, and a 512 GB SSD,
operating on Windows 10 Home Edition.

The study involves two significant phases:
Stage A examines the performance of three moduli by

processing data sets of 50000, 100000, 200000, 350000, and
500000 using each of the proposed methods.

In Stage B, we expanded our analysis to cover 19 sets,
varying from 3 to 21 moduli, with each modulo having an 8-bit
dimensionality. We processed a data set of 100000 numbers.

Throughout the two-stage simulation, we measured the
time characteristics of each method with attention to detail.
To guarantee precision and dependability, we reiterated each
measurement one hundred times and recorded the average time
for evaluation. The findings of these experiments are presented
concisely in Tables II and III, with time values depicted in
seconds.

Let us conduct a detailed examination of the ensuing tables,
delving deeper into the tabulated data with a scientific scrutiny.
The provided information discusses two stages: Stage A and
Stage B, focusing on their time characteristics and importance.
Stage A is crucial for tracking method behavior with increas-
ing data size. Analysis of the data shows a linear growth, which
indicates the stability of the obtained method using the core
function. To enhance understanding, graphs will be presented.



Table II provides insights into the time-related features
observed during Stage B, underscoring the significance of this
phase akin to Stage A. In a practical system comprising the
control system may encompass various configurations, such
as two, four, six, or more moduli. Consequently, exploring the
behavior of methods in relation to the number of moduli within
the system becomes imperative. The acquired data not only
facilitates an understanding of methodological performance
but also allows for inferences regarding the stability of the
methods.

The data from the given table were utilized to create
visual representations in the form of figures. In addition, a
more comprehensive analysis was enabled by extrapolating
the acquired values through polynomial methods, extending
the perspective on the outcomes.

Upon scrutinizing the acquired outcomes, we can extrap-
olate the following deductions. Examining the graphical rep-
resentation in Fig. 1, it becomes apparent that conventional
methodologies demonstrate efficacy particularly when han-
dling a limited quantity of numerical inputs. However, starting
from the processing of two hundred thousand numbers, MRC
method and interval method begin to lose.

A similar situation is apparent in the graph presented in Fig.
2. On average, our approach displays a time efficiency that is
roughly 8% superior to that of the Approximate Method.

The comparative analysis conducted on methods for trans-
lating numbers from RNS to positional notation revealed that
the method utilizing Akushsky core function and number rank
offers certain advantages. This is due to the performance of
addition and multiplication operations in positional notation
within the mentioned approach. When performing calculations
using MRC, each RNS modulo corresponds to a separate
channel in which calculations are completed using modular
arithmetic. However, these calculations are not performed
in parallel. When using the interval method, it is necessary
to complete operations such as addition, multiplication, and
degree expansion in the positional system. Degree expansion
can result in rather large values. One positive aspect of the
interval method is the ability to process data in a conveyor-
like manner.

VI. CONCLUSION

In this paper, we have presented a high speed method for
converting numbers from RNS to positional notation. The
proposed method offers a novel approach to achieve rapid and
accurate conversions. By leveraging the inherent properties of
the RNS and optimizing algorithms, our method streamlines
the conversion process, minimizing computational complexi-
ties, and significantly reducing conversion times. Experiments
demonstrate its superiority over conventional methods, show-
casing notable improvements in speed.

While our proposed method represents a significant ad-
vancement, there is still room for further exploration and
optimization. Future studies may investigate hybrid conver-
sion techniques that combine the strengths of different algo-
rithms, aiming to achieve even greater efficiency. Additionally,

evaluating the proposed method’s performance in large-scale
systems and exploring its potential application in emerging
technologies will be exciting avenues for future research.
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