
Ширяев Е.М., Бабенко М.Г., Безуглова Е.С., Лапина М.А. Разработка системы тестирования точности и эффективности библиотек гомоморфного

шифрования для рациональных чисел с фиксированной мантиссой. Труды ИСП РАН, том 1, вып. 2, 2019 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 1,

issue 2, 2019

15

DOI: 10.15514/ISPRAS-2019-1(2)-1

Разработка системы тестирования точности и
эффективности библиотек гомоморфного
шифрования для рациональных чисел с

фиксированной мантиссой

1 Е.М. Ширяев, ORCID: 0000-0002-2359-1291 <eshiriaev@ncfu.ru>
1 М.Г. Бабенко, ORCID: 0000-0001-7066-0061 <mgbabenko@ncfu.ru>

1 Е.С. Безуглова, ORCID: 0000-0002-7608-0452 <eksbezuglova@ncfu.ru>
1 М.А. Лапина, ORCID: 0000-0001-8117-9142 <mlapina@ncfu.ru>

1 Северо-Кавказский Федеральный Университет, 355017, Россия,

г. Ставрополь, ул. Пушкина, д. 1.

Аннотация. По мере увеличения объема данных, обрабатываемых с использованием облачных

технологий, конфиденциальность данных как в общедоступных, так и в частных облачных средах

становится все более уязвимой для различных угроз безопасности. Для решения этой проблемы были

предложены схемы полностью гомоморфного шифрования в качестве потенциального решения для

повышения конфиденциальности данных в облачных вычислениях. Схемы полностью гомоморфного

шифрования позволяют пользователям выполнять вычисления с зашифрованными данными, тем самым

защищая конфиденциальность обрабатываемой информации. Однако, несмотря на потенциальные

преимущества полностью гомоморфного шифрования, его широкое внедрение остается сложной

задачей из-за его вычислительной сложности. Исследователи активно изучают применение этой

технологии в различных областях, а группы ученых разрабатывают библиотеки алгоритмов полностью

гомоморфного шифрования, которые обладают различными качествами и характеристиками. В этой

статье мы предлагаем концепцию системы тестирования, основанной на точности и эффективности

обработки данных за счет использования быстрого преобразования Фурье, выполняемого в

зашифрованном формате, с использованием двух наиболее широко известных библиотек полностью

гомоморфного шифрования для рациональных чисел с фиксированной мантиссой. Предлагаемая

система позволяет анализировать библиотеки на основе их пригодности для использования в различных

приложениях с учетом требований как к точности, так и к эффективности обработки. В будущем

планируется дальнейшее развитие процесса тестирования путем включения показателей использования

памяти, менее популярных библиотек и целочисленных схем.

Ключевые слова: Гомоморфное Шифрование; CKKS; Быстрое Преобразование Фурье; Облачные

Вычисления; Точность Вычислений; Скорость Вычислений.

Для цитирования: Ширяев Е.М., Бабенко М.Г., Безуглова Е.С., Лапина М.А. Разработка системы

тестирования точности и эффективности библиотек гомоморфного шифрования для рациональных

чисел с фиксированной мантиссой. Труды ИСП РАН, том 1, вып. 2, 2019 г., стр. 15–19. DOI:

10.15514/ISPRAS–2019–1(2)–1.

Благодарности: Работа выполнена при поддержке Российского научного фонда 19-71-10033,

https://rscf.ru/project/19-71-10033/.

Shiriaev E.M., Babenko M.G., Bezuglova E.S., Lapina M.A. Development of a system for testing the accuracy and efficiency of

homomorphic encryption libraries for rational numbers with a fixed mantissa. Trudy ISP RAN/Proc. ISP RAS, vol. 1, issue 2, 2019. pp. 15-

19.

16

Development of a system for testing the accuracy and efficiency of
homomorphic encryption libraries for rational numbers with a fixed

mantissa

1 E.M. Shiriaev ORCID: 0000-0002-2359-1291 <eshiriaev@ncfu.ru>
1 M.G. Babenko ORCID: 0000-0001-7066-0061 <mgbabenko@ncfu.ru>

1 E.C. Bezuglova ORCID: 0000-0002-7608-0452 <eksbezuglova@ncfu.ru>
1 M.A. Lapina ORCID: 0000-0001-8117-9142 <mlapina@ncfu.ru>

1 North Caucasus Federal University,1, Pushkin st.,

Stavropol, 355017, Russia.

Abstract. As the volume of data processed using cloud technologies increases, data privacy in both public and

private cloud environments is becoming increasingly vulnerable to various security threats. To solve this

problem, fully homomorphic encryption schemes have been proposed as a potential solution to enhance data

privacy in cloud computing. Fully homomorphic encryption schemes allow users to perform calculations with

encrypted data, thereby protecting the confidentiality of the information being processed. However, despite the

potential benefits of fully homomorphic encryption, its widespread adoption remains a challenge due to its

computational complexity. Researchers are actively exploring the application of this technology in various

fields, and groups of scientists are developing libraries of fully homomorphic encryption algorithms that have

various qualities and characteristics. In this article, we propose the concept of a testing system based on the

accuracy and efficiency of data processing through the use of fast Fourier transform performed in an encrypted

format using two of the most widely known libraries of fully homomorphic encryption for rational numbers

with a fixed mantissa. The proposed system allows analyzing libraries based on their suitability for use in

various applications, taking into account the requirements for both accuracy and processing efficiency. In the

future, it is planned to further develop the testing process by including memory usage indicators, less popular

libraries and integer schemes.

Keywords: Homomorphic Encryption; CKKS; Fast Fourier Transform; Cloud Computing; Computational

Accuracy; Computational Speed.

For citation: Shiriaev E.M., Babenko M.G., Bezuglova E.S., Lapina M.A. Development of a system for testing

the accuracy and efficiency of homomorphic encryption libraries for rational numbers with a fixed mantissa.

Trudy ISP RAN/Proc. ISP RAS, vol. 1, issue 2, 2019. pp. 15-19 (in Russian). DOI: 10.15514/ISPRAS-2019-

1(2)-1.

Acknowledgements. This work was supported by the Russian Science Foundation 19-71-10033,

https://rscf.ru/project/19-71-10033/.

1. Introduction

The performance of both central and GPU processors is steadily increasing. This fact leads to the

fact that computing devices face problems such as a wall of memory and a wall of power, when

productivity growth begins to decrease and eventually stops with a decrease in the process and an

increase in the number of transistors on a chip [1]. This is due to a mismatch between the processor's

processing speed and the memory response time. This fact is one of the reasons for the spread of

distributed computing beyond research and government enterprises into the public sphere of activity.

Thus, since the beginning of the XXI century, the concept of providing computing resources in the

form of a service was born, which eventually led to cloud technologies.

Cloud technologies (CT) is a generalized term that covers concepts such as cloud storage, cloud

computing, etc., which have one common feature – the technology is based on a distributed system

where nodes are geographically remote from each other and connected to each other over the Internet

[2]. n addition, in addition to productivity growth, the volume of processed data is also growing,

which has led to the so-called Big Data [3]. CT allows computationally complex technologies to be

applied to more consumers, such as artificial intelligence technologies. CT is used for training

artificial neural networks (NN) [4]. When training NN, it is necessary to process datasets a large

Ширяев Е.М., Бабенко М.Г., Безуглова Е.С., Лапина М.А. Разработка системы тестирования точности и эффективности библиотек гомоморфного

шифрования для рациональных чисел с фиксированной мантиссой. Труды ИСП РАН, 2018, том 1 вып. 2, с. 15-19.

17

number of times, which, with a large number of neurons and large datasets, requires a lot of

computing resources. The popularity of NN has also led to the popularity of renting CT for training

neural networks and the interest of scientific groups in this process [5], [6].

NN, is one example of the application of CT, they are also used in other various fields. As in

medicine, for example. In [7] researchers propose an open cloud for drug management. In another

paper [8] , the authors show the use of CT for medical research, namely three-dimensional ultrasound

examination. CT is also used in various government sectors. For example, in [9], the authors show

a CT-based traffic assessment system. CT is also used in the field of finance, for example, in [10]

the authors explore a cloud platform for the needs of banking structures. Another example is already

real solutions in the field of banking, such as the Russian bank "Sber" provides cloud services in its

"Sber Cloud" (until May 2022, after "Cloud.ru” [11]), in addition, Sber has developed its ecosystem

based on CT [12]. In addition to Sber, there are other CT ecosystems on the Russian market. For

example, there is an ecosystem of Yandex [13], VK [14] and MTC [15]. Amazon can be cited as

global examples [16].

In this case, an ecosystem is understood as a set of interconnected services of one company, where

cloud solutions are used not only for storage and computing, but also for building the infrastructure

of all customer data, as well as between them [17]. Such ecosystems are a convenient tool from the

client's point of view, as they simplify their access to various services. However, such ecosystems

contain a large amount of confidential customer data, which poses a threat to their security. For

example, in 2023, 420 leaks of databases of Russian companies were recorded [18]. his situation has

developed due to the fact that data in large cloud structures is subject not only to external threats,

but also internal ones. Building a complex security system against external threats can lead to

internal problems, such as failures, application synchronization errors, as well as the prior collusion

of compromised employees [19]. End-to-end encryption has not justified most of the hopes placed

on it, due to the increased danger from the inside in the absence of proper control during the

development of the system to errors and possible backdoors [20].

To increase data privacy in cloud systems, there are several ways to solve this problem. In any case,

the system developer will have to choose a balance between speed, quality of service and safety. In

the scientific environment, methods based on Secret Sharing Schemes (SSS) are quite popular [21],

if we consider Google Scholar, then over the past 10 years, when searching for the keywords "Secret

Sharing System", "Cloud Technology", "Cloud Services", "Cloud Computing" and "Cloud Storage",

the system outputs more than 10,000 works. Both perfect SSS and threshold SSS are used to ensure

safety [21]. In addition, SSS based on the Residue Number System (RNS) are popular, such as the

Mignotte Scheme [22], as well as Asmut-Bloom [23]. Based on SSS-RNS, there are, for example,

the following solutions [24], [25].

However, using SSS, it is possible to increase the security of access to the cloud structure based on

authenticated users, i.e. complete confidentiality is not ensured. To ensure complete confidentiality,

it is possible to use the so-called Fully Homomorphic Encryption (FHE) [26]. FHE allows you to

process information in encrypted form, based on the operations of homomorphic addition and

homomorphic multiplication of ciphertexts. However, even since 2009, the efficiency of FHE

schemes has increased significantly due to various mathematical techniques [27], [28], [29], FHE

still remains a computationally complex encryption method. Many researchers have developed a

variety of FHE libraries, such as SEAL [30], OpenFHE [31], etc. However, although all schemes

meet safety standards [32] their technical implementation is quite diverse and has different

characteristics, speed, accuracy, etc. For example, in [33] a comparison of the implementations of

the SEAL and Palisade libraries (currently OpenFHE) was carried out, however, it was carried out

in the field of one operation – matrix multiplication, which is difficult to use as standardized testing.

If we consider high-performance computing, then there is a set of tests aimed at determining the

performance of supercomputers. They include tests such as LINPACK [34] and HPC Challenge

Benchmark [35]. Two of these test suites can be distinguished. This is the solution of a dense system

of linear algebraic equations (SLAE) by the LUP decomposition method [36] and a test for

Shiriaev E.M., Babenko M.G., Bezuglova E.S., Lapina M.A. Development of a system for testing the accuracy and efficiency of

homomorphic encryption libraries for rational numbers with a fixed mantissa. Trudy ISP RAN/Proc. ISP RAS, vol. 1, issue 2, 2019. pp. 15-

19.

18

calculating the fast Fourier transform (FFT) [37]. If the SLAE solution in the case of FHE is not

suitable due to the requirement to perform a division operation, then FFT can be calculated using

addition and multiplication operations. The calculation of FFT by a specific library can show a lot

of different information. To the extent that the organization of library functions and variables is

capable of processing recursions, overwriting and changing ciphertexts, performing bootstrapping

operations, etc., In fact, these criteria relate to the speed of data processing, in addition, FFT will

allow you to analyze the accuracy of the operations performed. Considering the fact that FFT

involves the processing of rational complex numbers, the CKKS scheme is a suitable environment

for research [38].

Thus, the purpose of this work is to conduct research related to the performance of FHE libraries,

namely, to develop a test that will evaluate the performance and accuracy of a particular library. The

positive results of this work will allow us to capture more libraries and characteristics of FHE

libraries in the future and develop a methodology for evaluating FHE performance, which will help

FHE developers and researchers evaluate the performance of new FHE circuits and libraries.

The work is organized as follows: section 2 provides more detailed information about FHE and the

CKKS scheme, section 3 discusses FHE testing in more detail, section 4 provides the encrypted FFT

algorithm, section 5 presents the main results of the work, section 6 provides conclusions on the

work done, as well as a description of further research.

2. Fully Homomorphic Encryption

FHE is an encryption method that allows you to perform arithmetic operations on encrypted

numbers. FHE was first presented in 2009 by Gentry in his dissertation [26], however, homomorphic

encryption itself has been known for a long time. Cipher schemes that are capable of performing

homomorphic addition or homomorphic multiplication over encrypted numbers appeared in the last

century, examples of such schemes are RSA [39] and El-Gamal [40]. Since 2009, many schemes

based on the Genty scheme have been developed. Which were originally called Somewhat

Homomorphic Encryption, due to the strict restrictions imposed on the number of multiplication

operations. However, with the development of operations such as bootstrapping [28] and

rescaling[41], the restriction has become less stringent, the secret key is modified and the number

of allowed multiplications increases, however, this is a rather computationally complex operation

and requires more and more resources each time.

Initially, FHE supported either Boolean values [42], or integer values [43]. Currently, there is a

scheme FHE Homomorphic Encryption of an approximate numbers (HEAAN) or, according to the

names of the authors, CKKS [38] that supports rational numbers with a fixed mantissa. This scheme

expands the scope of application of FHE.

CKKS is a homomorphic encryption system designed to efficiently perform approximate arithmetic

operations on encrypted data. It is especially suitable for calculations involving real or complex

numbers over the field CN/2. The plaintext space and the ciphertext space have the same area.

𝑍𝑄[𝑋]/(𝑋𝑁 + 1)

where N – degree of two.

Batch encoding CKKS 𝐶
𝑁

2 ↔ 𝑍𝑄[𝑋]/(𝑋𝑁 + 1) maps an array of complex numbers to a polynomial

with the property: 𝑑𝑒𝑐𝑜𝑑𝑒(𝑒𝑛𝑐𝑜𝑑𝑒(𝑚1) ⊗ 𝑒𝑛𝑐𝑜𝑑𝑒(𝑚2)) ≈ 𝑚1 ⊙ 𝑚2, where ⊗ is a

multiplication of components, and ⊙ is a non-cyclic convolution.

2.1 CKKS scheme

The CKKS scheme supports the standard recommended parameters [32], selected to provide 128-

bit security for a single ternary private key 𝑠 ∈𝑢 {−1,0,1}𝑁, according to the group of homomorphic

Ширяев Е.М., Бабенко М.Г., Безуглова Е.С., Лапина М.А. Разработка системы тестирования точности и эффективности библиотек гомоморфного

шифрования для рациональных чисел с фиксированной мантиссой. Труды ИСП РАН, 2018, том 1 вып. 2, с. 15-19.

19

encryption standards. Encoding in CKKS is performed in the field of complex numbers using

Lagrange polynomials.

The scheme uses approximate arithmetic to construct ciphertexts. Let's consider this arithmetic. To

do this, the base 𝑝 > 0 and the module 𝑞0, are fixed, as well as 𝑞 = 𝑝 ⋅ 𝑞0 at 0 < 𝑙 ≤ 𝐿. An integer

𝑝 will be used as a basis for scaling in approximate calculations. As a security setting 𝜆 a parameter

is selected such that 𝑀 = 𝑀(𝜆, 𝑞𝐿) for a polynomial ring.At the boundaries 0 < 𝑙 ≤ 𝐿 of the

ciphertext level 𝑙 a vector is defined in ℛ𝓆ℓ
𝓀 for a fixed integer 𝑘.

1) Key generation: The encryption process begins with the generation of keys, which are

public 𝑝𝑘 and private 𝑠𝑘 keys. The private key is used to decrypt the data, while the public

key is used to encrypt it.

2) Encryption: To encrypt the plaintext vector 𝑥, the following steps are performed:

• Padding: The vector 𝑚(𝑥) is filled with zeros, the length of the vector is equal to the specified

power of two 𝑁.

• Encoding: The plaintext vector 𝑥 is encoded into the plaintext polynomial 𝑚(𝑥), which is a

polynomial representation of the message.

• Homomorphic Encryption: The polynomial 𝑚(𝑥) is encrypted using 𝑝𝑘 to obtain the

polynomial 𝑐(𝑥) of the ciphertext, while it is necessary to control the error value 𝑒, which

satisfies |𝑒|∞
𝑐𝑎𝑛 ≤ 𝑒𝑀𝑎𝑥, at which the expression ⟨𝑐, 𝑠𝑘⟩ = 𝑚 + 𝑒𝑀𝑎𝑥(𝑚𝑜𝑑 𝑞𝐿).

3) Decryption: To decrypt the polynomial 𝑐(𝑥) of the ciphertext, the following steps are

performed:

• Homomorphic Decryption: The ciphertext polynomial 𝑐(𝑥) is decrypted using the secret key

to obtain the plaintext polynomial 𝑚(𝑥) ← ⟨𝑐, 𝑠𝑘⟩(𝑚𝑜𝑑 𝑞𝑙).

• Decoding: To obtain the original text vector 𝑥 the text polynomial 𝑚(𝑥) is converted back

from a polynomial to a message.

4) Homomorphic Operations: CKKS supports several approximate arithmetic operations

with encrypted data, including addition and multiplication. Homomorphic addition and

multiplication can be performed in the ciphertext space without the need to decrypt the

ciphertext.

• Homomorphic Addition: Taking into account the two ciphertexts 𝑐1(𝑥) and 𝑐2(𝑥),

representing the encrypted values 𝑚1(𝑥) and 𝑚2(𝑥) respectively, the homomorphic addition

is performed by adding the corresponding coefficients modulo the source text of the module:

𝑐(𝑥) = 𝑐1(𝑥) + 𝑐2(𝑥), in addition, errors 𝑒1 and 𝑒2 are also summed.

• Homomorphic Multiplication: Taking into account the two ciphertexts 𝑐1(𝑥) and 𝑐2(𝑥),

representing the encrypted values 𝑚1(𝑥) and 𝑚2(𝑥) , respectively, homomorphic

multiplication transforms the ciphertext of polynomials modulo the source text of the module:

𝑐(𝑥) = 𝑐1(𝑥) × 𝑐2(𝑥), for multiplication, the proper error bounds 𝑒𝑚𝑢𝑙𝑡 ∈
ℛ с |𝑒𝑚𝑢𝑙𝑡|𝑐𝑎𝑛∞ 𝑒𝑚𝑢𝑙𝑡𝑀𝑎𝑥(𝑙) are allocated, where 𝑒𝑚𝑢𝑙𝑡𝑀𝑎𝑥(𝑙) is a given constant.

Both addition and multiplication lead to an increase in the approximation error 𝑒, the CKKS scheme

is able to decrypt data when the error is in certain aisles. When using the CKKS scheme, it is

important to control the error growth, which depends on the number of operations and their order.

Given the peculiarities of arithmetic, multiplication makes a big mistake. Different software

implementations of the CKKS scheme offer different ways to control them.

2.2 Fully Homomorphic Encryption Libraries

There are several FHE libraries. All of them are implemented in different programming languages

and support a different set of schemes, a detailed table with the characteristics of the schemes, for

example, is presented in [33]. Many of them are implemented in the C++ programming language,

this is due to the fact that this language supports most platforms, has memory protection and allows

Shiriaev E.M., Babenko M.G., Bezuglova E.S., Lapina M.A. Development of a system for testing the accuracy and efficiency of

homomorphic encryption libraries for rational numbers with a fixed mantissa. Trudy ISP RAN/Proc. ISP RAS, vol. 1, issue 2, 2019. pp. 15-

19.

20

you to use inserts from low-level code, as well as analyze code performance in detail. If we consider

libraries that implement the CKKS scheme, then in addition to SEAL, OpenFHE and Helib, there is

also HEaaN [44], a library developed by the authors of the CKKS scheme. In this paper, we will

focus on SEAL and OpenFHE. This choice was made because these libraries, in addition to being

developed in C++, also have Python implementations. Which expands their application. Python has

developed a large toolkit for working with NN, machine learning and data analysis. Given that

confidential data is also processed using these technologies, FHE can find applications in them.

Moreover, at the moment there is at least one library [45] for working with artificial intelligence

methods with FHE, this library uses SEAL for FHE methods, TenzorFlow for organizing data in the

form of tensors and PyTorch as a tool for building NN. However, there are several disadvantages in

this library: the library does not support encrypted training of neural networks, matrix multiplication

does not occur in encrypted form. Porting the library from C++ to Python could lead to a drop in

performance and accuracy, in addition, although the libraries themselves are based on the same set

of FHE schemas, they are organized completely differently.

The library development paradigm itself has an impact here. OpenFHE is a ready-made toolkit for

working with FHE. In most cases, the user only needs to set the cipher parameters, and often

boundary ones, and call the necessary functions (for example, addition, multiplication, subtraction,

etc.). If the user needs to apply Bootstrapping, he needs to add the appropriate parameters and call

the function. SEAL involves more subtle work. If in the case of OpenFHE, the user sets the value

of the multiplicative depth [26], then in the case of SEAL, the user needs to select the parameters so

that the required multiplicative depth is obtained based on them. In addition, OpenFHE itself

determines the set of primes and their number based on a given boundary. For SEAL, you need to

set the number and size of modules yourself. Also in SEAL, the user is required to control the CKKS

approximation error, the key and other cipher parameters himself after each operation. So we have

two fundamentally different libraries. On the one hand, OpenFHE is easy to use and allows you to

implement a secure homomorphic system, on the other hand, SEAL allows you to fine-tune each

parameter and organize calculations in the required way, which, with sufficient user skills, can

increase the speed of data processing while complying with the security standard.

Based on all the above, it follows that conducting a study of the performance and accuracy of even

two libraries will allow you to obtain scientifically significant data, and studying their

implementations in Python will allow you to study the influence of the programming language

scheme on the characteristics of the library, which will allow you to draw conclusions about which

library and in which programming language should be used in one or another the application.

3. Performance Testing

Performance testing is a process that is carried out in order to determine how fast a computing system

or part of it is running under a certain load. It can also serve to validate and validate other attributes

of system quality, such as scalability, reliability, and resource consumption. The most widely known

is high-performance computing (HPC) testing. HPC is the practice of combining computing power

to achieve higher performance than conventional computers or servers. HPC, or super-calculations,

are no different from conventional calculations, except for power. This is a way to process huge

amounts of data at very high speeds. To do this, several computers and storage devices are combined

into a single system. HPC, in fact, has a lot in common with CT, since CT implies combining

geographically remote computing centers into a common system. The use of FHE, as mentioned

above, allows you to process information in encrypted form, so when using FHE, the arithmetic of

either the entire CT system or part of it changes. The modified arithmetic already has other

qualitative indicators of computing power, which requires testing to determine the capabilities of

the system being developed. As mentioned earlier, LINPACK and HPC Challenge Benchmark

performance tests are the most popular for HPC.

Ширяев Е.М., Бабенко М.Г., Безуглова Е.С., Лапина М.А. Разработка системы тестирования точности и эффективности библиотек гомоморфного

шифрования для рациональных чисел с фиксированной мантиссой. Труды ИСП РАН, 2018, том 1 вып. 2, с. 15-19.

21

The performance in the LINPACK test provides information to clarify the peak performance claimed

by the computer manufacturer (peak performance is the maximum theoretical performance that a

computer can achieve, calculated as the product of the processor clock frequency by the number of

operations performed per clock cycle). The actual performance will always be lower than the

maximum. The performance measured by the LINPACK benchmark shows the number of

operations on 64-bit floating point numbers (additions and multiplications) that the computer

performed per second. This ratio is referred to as "FLOPS". However, computer performance when

working with real applications is likely to be significantly lower than the maximum performance

achieved when running the LINPACK test. LINPACK was designed to help users estimate the time

it takes their computer systems to solve problems using the LINPACK package. To do this, the

performance results obtained on 23 different computers solving a problem with a matrix size of 100

by 100 elements are extrapolated. This task size was chosen considering the characteristic memory

sizes and processor performance in that era: 10,000 floating-point numbers with a value from -1 to

1 are randomly generated to fill in a common dense matrix, then the duration of the LU

decomposition is measured with partial rotation. Over the following years, additional versions were

released with increased different task sizes, for example, with matrices of 300 by 300 and 1000 by

1000 numbers. There are also implementations using hardware capabilities to accelerate matrix-

vector and matrix-matrix operations.

However, from the point of view of FHE, testing using the LINPACK package is currently

ineffective in terms of the limitations imposed on calculations in FHE. The SLAE solution method

used in LINPACK uses a large number of matrix multiplications. As the results of the matrix

multiplication study in [33], have shown, one matrix with a size of 20 × 20 already requires more

than 20 GB of RAM. However, with the improvement of the matrix multiplication algorithm, it will

also be possible to test using LINPACK with the appropriate modification of the LINPACK package

itself to work with FHE.

The HPC Challenge Benchmark also contains a text for solving dense SLAE using the LUP

decomposition method, however, in addition to it, it also contains a test based on FFT. (other tests

aimed at memory bandwidth are not considered in this paper due to their value for the HPC hardware

component). From the point of view of FHE – FTT is the most suitable option due to the fact that it

manipulates the terms of the vector, in addition, FTT involves processing complex numbers, which

is an advantage in the case of the CKKS scheme. Thus, in this paper, a performance test of FHE

libraries will be developed based on the calculation of FFT in encrypted form. The developed test

will also allow you to measure the accuracy of the result.

4. Fast Fourier Transform

In addition to the testing benefits described in the previous section, FTT itself has many applications

in various applications. Let's look at FTT in more detail. FFT is an accelerated version of the Discrete

Fourier Transform (DFT) [46]. DFT is one of the Fourier transforms that is used in digital signal

processing algorithms, in addition, they have found wide application in other areas, such as audio

compression in MP3, JPEG image compression. In addition, DFT is used in solving partial

differential equations [47], as well as for performing the convolution operation [48]. DFT uses

trigonometric functions as well as exponential in its calculations, which complicates the hardware

processing of DFT. In order to speed up data processing, FFT was developed, the algorithm allowed

reducing the computational complexity from 𝑂(𝑁2) to 𝑂(𝑁 log(𝑁)). In general, the algorithm that

converts (𝑎1, 𝑎2, … 𝑎𝑛−1) to (𝑏1, 𝑏2, … , 𝑏𝑛) can be described by the following formula:

𝑏𝑖 = ∑ 𝜀𝑁
𝑖𝑗

𝑞−1

𝑗=0

(∑ 𝑎𝑘𝑞+𝑗𝜀𝑝
𝑘𝑖

𝑝−1

𝑘=0

),

Shiriaev E.M., Babenko M.G., Bezuglova E.S., Lapina M.A. Development of a system for testing the accuracy and efficiency of

homomorphic encryption libraries for rational numbers with a fixed mantissa. Trudy ISP RAN/Proc. ISP RAS, vol. 1, issue 2, 2019. pp. 15-

19.

22

where 𝜀 = 𝑒
2𝜋𝑖

𝑛 , 𝑁 = 𝑝𝑞, 𝑝 > 1, 𝑞 > 1,0 < 𝑘 < 1 and 𝑖 = 0, 𝑝 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . The algorithm splits the total

number of points 𝑎 ∈ 1, 𝑁̅̅ ̅̅ ̅ into 𝑝 and 𝑞 points and processes them in parallel, 𝑝 and 𝑞 are also split

into two parts until the number of processed values becomes 𝑛 = 2.

FFT also finds its application in the field of artificial intelligence, such as for performing convolution

in convolutional neural networks [48], and solving partial differential equations is used in NN

learning algorithms [49]. In addition, there are other FFT applications in NN [50], [51], [52]. Thus,

the development of the confidential FFT algorithm will also expand the use of NN in the field of

confidential data processing.

The FFT algorithm is not encrypted and consists of the following:

Algorithm 1. Fast Fourier Transform

Input: 𝑎 = {𝑎1, 𝑎2, … , 𝑎𝑁), 𝜀, 𝑁

Output: 𝑏 = {𝑏1, 𝑏2, … , 𝑏𝑛}

1. if 𝑁 ≤ 1 do:

1.1. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑏

2. ℎ_𝑛 = 𝑁/𝑛

3.𝑒𝑣𝑒𝑛 = {ℎ_𝑛}

4.𝑜𝑑𝑑 = {ℎ_𝑛}

5. for 𝑖 from 0 to ℎ_𝑛 do:

5.1. 𝑒𝑣𝑒𝑛𝑖 = 𝑎2⋅𝑖

5.2. od𝑑𝑖 = 𝑎2⋅𝑖+1

6. 𝑒𝑣𝑒𝑛 = 𝐹𝑎𝑠𝑡 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑒𝑣𝑒𝑛, 𝜀, ℎ_𝑛)

7. 𝑜𝑑𝑑 = 𝐹𝑎𝑠𝑡 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑜𝑑𝑑, 𝜀, ℎ_𝑛)

8. for 𝑖 from 0 to ℎ_𝑛 do:

8.1. 𝑏𝑖 = 𝑒𝑣𝑒𝑛𝑖 + 𝑜𝑑𝑑𝑖

8.2 𝑏𝑛−𝑖−1 = (𝑒𝑣𝑒𝑛𝑖 − 𝑜𝑑𝑑𝑖) ⋅ 𝜀

9. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑏

The algorithm uses recursions that are efficiently calculated in parallel, where the threads are

connected sequentially. The libraries in question have functionality for parallel computing.

In the case of homomorphic encryption, in addition to the modified FFT algorithm, it is also

necessary to implement an algorithm for initializing parameters. Despite the library differences.

SEAL and OpenFHE using pseudocode, we can describe the general initialization of parameters for

the CKKS scheme.

Algorithm 2. Encryption Parameters

Input: 𝑑𝑒𝑔𝑟𝑒𝑒

Output: 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟, 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑜𝑟, 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑜𝑟, 𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡

1. 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ← 𝑝𝑜𝑙𝑦𝑛𝑜𝑚 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 = 𝑑𝑒𝑔𝑟𝑒𝑒

2. 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ← 𝑠𝑒𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 =

= 𝑝𝑜𝑙𝑦𝑛𝑜𝑚 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑑𝑒𝑔𝑟𝑒𝑒(60, 40,40,40,60)

3.𝑠𝑐𝑎𝑙𝑒 = 240

4. 𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ← 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

5. 𝐾𝑒𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 ← 𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡

6. 𝐾𝑒𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 → 𝑆𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦

7. 𝐾𝑒𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 → 𝑃𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦

8. 𝐾𝑒𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 → 𝑅𝑒𝑙𝑖𝑛 𝑘𝑒𝑦

Ширяев Е.М., Бабенко М.Г., Безуглова Е.С., Лапина М.А. Разработка системы тестирования точности и эффективности библиотек гомоморфного

шифрования для рациональных чисел с фиксированной мантиссой. Труды ИСП РАН, 2018, том 1 вып. 2, с. 15-19.

23

9. 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑜𝑟 ← (𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦)

10. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟 ← (𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

11. 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑜𝑟 ← (𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑠𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦)

12. 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 ← (𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

13. 𝒓𝒆𝒕𝒖𝒓𝒏 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟, 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑜𝑟, 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑜𝑟, 𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡

The above algorithm generates the parameters necessary to work with CKKS. In this algorithm, we

indicate that the output is a complete tuple of CKKS parameters, but in the future, we will only work

with 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟 and 𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡. Since the 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟 contains all the necessary parameters

to perform homomorphic operations, and 𝐶𝑟𝑦𝑝𝑡𝑜 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 allows you to create "empty" vectors

represented in CKKS. The remaining parameters are used for encryption and decryption, we omit

these operations in our study, since they are trivial. Next, let's look at the algorithm for encrypted

FFT calculation.

Algorithm 3. Encrypted Fast Fourier Transform

Input: 𝑎 = {𝑎1, 𝑎2, … , 𝑎𝑁), 𝜀, 𝑁, 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟, 𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡

Output: 𝑏 = {𝑏1, 𝑏2, … , 𝑏𝑛}

1.if 𝑁 ≤ 1 do:

1.1. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑏

2. ℎ_𝑛 = 𝑁/𝑛

3.𝑒𝑣𝑒𝑛 = 𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 → {ℎ_𝑛}

4.𝑜𝑑𝑑 = 𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 → {ℎ_𝑛}

5. for 𝑖 from 0 to ℎ_𝑛 do:

5.1. 𝑒𝑣𝑒𝑛𝑖 = 𝑎2⋅𝑖

5.2. od𝑑𝑖 = 𝑎2⋅𝑖+1

6. 𝑒𝑣𝑒𝑛 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝐹𝑎𝑠𝑡 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑒𝑣𝑒𝑛, 𝜀, ℎ_𝑛, 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟, 𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

7. 𝑜𝑑𝑑 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝐹𝑎𝑠𝑡 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑜𝑑𝑑, 𝜀, ℎ_𝑛, 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟, 𝐶𝑟𝑦𝑝𝑡𝑜 𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

8. for 𝑖 from 0 to ℎ_𝑛 do:

8.1. 𝑏𝑖 = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟 → 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛(𝑒𝑣𝑒𝑛𝑖 , 𝑜𝑑𝑑𝑖)

8.2. 𝑡𝑒𝑚𝑝 = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟 → 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑆𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑒𝑣𝑒𝑛𝑖, 𝑜𝑑𝑑𝑖)

8.3 𝑏𝑛−𝑖−1 = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟 → 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑡𝑒𝑚𝑝 ⋅ 𝜀)

9. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑏

This algorithm differs from the original one in that vectors of encrypted numbers are processed. To

do this, the 𝑡𝑒𝑚𝑝 temporary variable is used, which stores the intermediate result of subtraction, the

connected parameters 𝐶𝑟𝑦𝑝𝑡𝑜 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 and 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟, are also used, they are necessary to create

an empty length vector that meets the requirements of the created encryption scheme and perform

homomorphic operations. Here it is worth noting the disadvantage of this algorithm. Given that the

algorithm is recursive, we need to multiply the scheme parameters with each iteration of the

recursion. However, this does not harm the security of the scheme, since the encryption keys are not

in them, additional RAM is still spent, which must be controlled.

Thus, based on the above algorithms, a system for testing the performance and accuracy of the SEAL

and OpenFHE libraries was developed. Next, let's look at the results of the conducted testing.

5. Experimental analysis

The testing system is organized as follows:

1) A vector of complex 𝑖𝑛𝑝𝑢𝑡 numbers is created based on a sequence of pseudorandom

numbers in the range from 0 to 1;

2) Using Algorithm 1, the FFT is calculated, the results are stored in vector 𝑥, to obtain a

Shiriaev E.M., Babenko M.G., Bezuglova E.S., Lapina M.A. Development of a system for testing the accuracy and efficiency of

homomorphic encryption libraries for rational numbers with a fixed mantissa. Trudy ISP RAN/Proc. ISP RAS, vol. 1, issue 2, 2019. pp. 15-

19.

24

reliable result, Algorithm 1 is run 10,000 times;

3) Using Algorithm 2, the encryption parameters for the CKKS scheme are set;

4) Based on the specified parameters, the input vector is encrypted into the 𝑐_𝑖𝑛𝑝𝑢𝑡 vector;

5) Using Algorithm 3, an encrypted FTP is calculated, the time spent on the calculation is

measured, the results are stored in the vector 𝑐_𝑥, to obtain a reliable result, Algorithm 3 is

run 10,000 times;

6) The error is calculated as Δ𝑥 = |𝑥 − 𝑐_𝑥|;

7) The output is supplied with Δ𝑥 and the time spent on executing the algorithm in ms.

The developed testing system was launched on a computer with the following characteristics:

• Processor frequency: 1600–3400 MHz;

• Number of cores/threads: 4/8;

• Process technology: 14 nm;

• Architecture: x86;

• L1 cache: 256 KB;

• L2 Cache: 1 MB;

• L3 cache: 6 MB;

• Video memory capacity: 4 GB;

• RAM capacity: 16 GB;

• RAM Type: DDR4;

• ROM capacity: 256 GB;

• ROM Type: SSD.

To exclude the influence of various approaches to bootstrapping and key relinearization, the number

of numbers in the vector is limited to 250. Let's consider the results obtained in the form of graphs.

5.1 Investigating the accuracy of fully homomorphic encryption libraries

First, let's look at the general graph (Fig. 1). For clarity, the graph is presented on a logarithmic

scale. In general, SEAL and OpenFHE have shown good results in both programming languages.

The overall accuracy of the result is obtained up to 7 decimal places. This is a good result, which is

within the bounds for both NN [53], [54], and FFT [55]. If we consider the result exclusively within

the framework of these libraries, then the implementation of SEAL in Python showed the worst

accuracy result, while the implementation of SEAL in C++ shows the best result. At the same time,

OpenFHE shows a stable error on both implementations. The result obtained can explain the

peculiarities of the organization of variables in programming languages. In C++, long arithmetic is

not initially implemented, the NTL [56] library is used to support it, , and in addition to NTL, GMP

[57] is also used to speed up the processing of large numbers by SEAL and OpenFHE. In Python,

long arithmetic is implemented initially. For C++, the developer can use NTL only when necessary,

thereby increasing the processing speed of the values that the processor architecture supports. Python

also has this feature, but the developer could have ignored it.

Ширяев Е.М., Бабенко М.Г., Безуглова Е.С., Лапина М.А. Разработка системы тестирования точности и эффективности библиотек гомоморфного

шифрования для рациональных чисел с фиксированной мантиссой. Труды ИСП РАН, 2018, том 1 вып. 2, с. 15-19.

25

Fig. 1. The results of the study of the error of the encrypted FFT algorithm

For more clarity, let's look at an illustration of how many times the SEAL implementation is more

accurate than the OpenFHE implementation in C++ (Fig. 2)

Fig. 2. The result of a study of the error ratio of the algorithm encrypted by the FFT libraries SEAL and

OpenFHE in C++ localization.

As we can observe with small values of SEAL, more precisely 6 times, the greatest advantage is in

the range from 130 to 210 values in the vector, then the advantage begins to decrease. In general,

we can say that SEAL is more accurate than OpenFHE by about ±30 times (The average values

were obtained based on the polynomial 𝑦1 = 2 ⋅ 10−12𝑥6 − 1 ⋅ 10−9𝑥5 + 2 ⋅ 10−7𝑥4 + 2 ⋅
10−5𝑥3 − 0.0069𝑥2 + 0.6861𝑥 + 0.3432 with a likelihood coefficient of 𝑅2 = 0.8564).

Thus, we can conclude the following. The considered implementations of the FHE CKKS scheme

libraries are quite accurate, but the most accurate is SEAL in the C++ implementation. Based on the

result obtained, it is possible to evaluate which implementation is most suitable for which application

in terms of accuracy. For example, any implementation can be used to build a confidential NN, but

for transmitting an encrypted signal in an area with increased interference, SEAL in the C++

implementation is the most suitable. Next, let's look at the results of performance testing.

Shiriaev E.M., Babenko M.G., Bezuglova E.S., Lapina M.A. Development of a system for testing the accuracy and efficiency of

homomorphic encryption libraries for rational numbers with a fixed mantissa. Trudy ISP RAN/Proc. ISP RAS, vol. 1, issue 2, 2019. pp. 15-

19.

26

5.2 Investigating the performance of fully homomorphic encryption libraries

Similarly to Section 5.1, we will first analyze the general graph (Fig. 3). For clarity, the graph is

presented on a logarithmic scale.

Fig. 3. The results of the performance study of the encrypted FFT algorithm

Analyzing the graph, you can establish the following. OpenFHE has the worst performance in the

C++ implementation, followed by OpenFHE in the Python implementation. SEAL has the best

performance in both implementations. However, it is worth noting that in some cases, OpenFHE in

the Python implementation works faster, such as for a vector of length 10, 20,40,70 and 140 values.

Analyzing the curves, it can be established that the OpenFHE curve in the Python implementation

is more smoothed than SEAL. The SEAL curve has a stepped appearance up to a vector length of

130, after which it is smoothed. If we denote the stepwise shape of the curve as the effect of noise

and approximate the curve using the polynomial 𝑦2 = 1 ⋅ 10−12𝑥6 + 2 ⋅ 10−9𝑥5 − 9 ⋅ 10−7𝑥4 +
0.0002𝑥3 − 0.0128𝑥2 + 0.5851𝑥 − 3.4336 with a likelihood of R² = 0.9575, it can be noted that

the advantage of OpenFHE in the Python implementation remains only on small vectors. Thus, we

can say that SEAL has the best performance in both implementations. Now let's conduct a more

detailed analysis of the SEAL implementations (Fig. 4).

Fig. 4. The result of a study of the performance ratio of the FFT encrypted algorithm by the SEAL library in

C++ and Python implementations.

Ширяев Е.М., Бабенко М.Г., Безуглова Е.С., Лапина М.А. Разработка системы тестирования точности и эффективности библиотек гомоморфного

шифрования для рациональных чисел с фиксированной мантиссой. Труды ИСП РАН, 2018, том 1 вып. 2, с. 15-19.

27

Here we can observe that the Python implementation has a slight performance advantage (The

average values were obtained based on the polynomial 𝑦3 = 2 ⋅ 10−14𝑥6 − 2 ⋅ 10−11𝑥5 + 6 ⋅
10−9𝑥4 − 1 ⋅ 10−6𝑥3 + 9 ⋅ 10−5𝑥2 − 0.0033𝑥 + 1.0814 with a likelihood coefficient 𝑅2 =
0.6121) in the range from 1.033 to 1.060. The average value of the advantage is within ±1.40. This

result can be explained by the fact that in section 5.1 it was found that the Python implementation is

less accurate, thus the C++ implementation provides greater accuracy while losing performance.

However, as follows from Fig. 4, the loss is quite small.

Thus, we can conclude the following. The SEAL library in the C++ implementation has the best

characteristics related to the accuracy of the calculation result. This can be explained by the fact that

it has lower performance compared to the Python implementation and more fine-tuning of

parameters compared to the OpenFHE library. OpenFHE sets modules based on a given

multiplicative depth automatically when, as a SEAL, explicit module assignment is required. Due

to this fact, SEAL can support the required number of multiplications at a lower multiplicative depth

than OpenFHE, which affects computing performance.

The general results of the testing can be considered as follows. SEAL has the best performance due

to more subtle and complex parameter settings. The Python implementation shows the best

performance, and the C++ implementation shows the highest accuracy. Thus, SEAL can be used in

applications that require the best performance and accuracy with an uncompressed time frame of the

application development process. OpenFHE allows you to reduce the development time by reducing

the quality and speed of data processing. In addition, both SEAL and OpenFHE in Python

implementations are generally suitable for working with artificial intelligence methods, however,

the SEAL implementation is not recommended for use in applications requiring high accuracy.

6. Conclusion

In this paper, we developed a system for testing the accuracy and effectiveness of homomorphic

encryption libraries for rational numbers with a fixed mantissa. During the study, it was found that

the FHE CKKS library falls under the testing criteria. The testing system itself can be built in the

likeness of HPC tests, since the scope of FHE can be described as adjacent to HPC, since they are

used in CT-based systems. Of the HPC tests, the most suitable for FHE, at the moment, is the

calculation of FFT, in addition, it was found that FFT itself has many applications and the

development of encrypted FFT is relevant in addition to the development of a testing system.

Thus, a testing system based on encrypted FFT was developed. The most popular FFT libraries that

contain the CKKS scheme, namely SEAL and OpenFHE, were selected as test objects. The libraries

were considered in two implementations, in C++ and Python. Testing has shown that the SEAL

library has the best characteristics. This advantage is achieved due to a more complex and precise

selection of parameters for the CKKS scheme, as well as the library structure itself. At the same

time, OpenFHE has the advantage of simpler configuration, the user needs to set the minimum

parameters, then the library will calculate the remaining parameters automatically.

The paper presents a minimal testing system that does not cover the entire list of characteristics, and

also allows testing only two libraries. In the future, it is planned to implement testing of memory

casts, a larger set of libraries (for example, HEaaN and HElib), as well as integer FHE schemes such

as BFV and BGV. The resulting testing system will allow for detailed research of FHE libraries and

circuits, which will enable researchers and developers to select the FHE circuit and library that is

most suitable for their research or application.

References

[1] M. Horowitz, ‘1.1 computing’s energy problem (and what we can do about it)’, in 2014

IEEE international solid-state circuits conference digest of technical papers (ISSCC), IEEE,

2014, pp. 10–14. Accessed: Mar. 28, 2024. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/6757323/?casa_token=fMNbJ8Nw94gAAAA

Shiriaev E.M., Babenko M.G., Bezuglova E.S., Lapina M.A. Development of a system for testing the accuracy and efficiency of

homomorphic encryption libraries for rational numbers with a fixed mantissa. Trudy ISP RAN/Proc. ISP RAS, vol. 1, issue 2, 2019. pp. 15-

19.

28

A:vmTZxzOOldPqzK0lmLdXWbdnZvqPy6OySZLPaVvb83AZfBNYY0n05qzHfWvjyB5F

zWMavxPwDtodgQ

[2] M. A Vouk, ‘Cloud computing–issues, research and implementations’, Journal of computing

and information technology, vol. 16, no. 4, pp. 235–246, 2008.

[3] S. Sagiroglu and D. Sinanc, ‘Big data: A review’, in 2013 international conference on

collaboration technologies and systems (CTS), IEEE, 2013, pp. 42–47.

[4] R. M. Golden, Mathematical methods for neural network analysis and design. MIT Press,

1996. Accessed: Oct. 10, 2023. [Online]. Available:

https://books.google.com/books?hl=ru&lr=&id=ru9yRNMfpbsC&oi=fnd&pg=PA1&dq=art

ificial+neural+network+mathematics&ots=dasu5AVuyu&sig=ZjVg_cHUG8mDRkaV9jidA

vXdW7M

[5] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, ‘Fast deep neural network

training on distributed systems and cloud TPUs’, IEEE Transactions on Parallel and

Distributed Systems, vol. 30, no. 11, pp. 2449–2462, 2019.

[6] S. Teerapittayanon, B. McDanel, and H.-T. Kung, ‘Distributed deep neural networks over

the cloud, the edge and end devices’, in 2017 IEEE 37th international conference on

distributed computing systems (ICDCS), IEEE, 2017, pp. 328–339. Accessed: Mar. 28,

2024. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/7979979/?casa_token=BTZNjd-

0zbgAAAAA:Ehg9i405WgCFV6X_2NRKgPDTkSP0wuLbn-

MJCLTesrLw9yZovV62v9FW1srTSOhr8U-GuhlKMUqK1g

[7] K. Chung and R. C. Park, ‘P2P-based open health cloud for medicine management’, Peer-

to-Peer Networking and Applications, vol. 13, no. 2, pp. 610–622, 2020.

[8] A. Meir and B. Rubinsky, ‘Distributed network, wireless and cloud computing enabled 3-D

ultrasound; a new medical technology paradigm’, PloS one, vol. 4, no. 11, p. e7974, 2009.

[9] Z. Deng, D. Huang, J. Liu, B. Mi, and Y. Liu, ‘An assessment method for traffic state

vulnerability based on a cloud model for urban road network traffic systems’, IEEE

Transactions on Intelligent Transportation Systems, vol. 22, no. 11, pp. 7155–7168, 2020.

[10] S. Ghule, R. Chikhale, and K. Parmar, ‘Cloud computing in banking services’, International

Journal of Scientific and Research Publications, vol. 4, no. 6, pp. 1–8, 2014.

[11] A. "Cloud Technologies", 'Cloud Cloud.ru — Russian IaaS/PaaS cloud platform and ML

services, cloud services from a leading provider', Cloud Cloud.ru — Russian IaaS/PaaS

cloud platform and ML services, cloud services from a leading provider. Accessed: Apr. 01,

2024. [Online]. Available: https://cloud.ru/ru

[12] ‘Cloud Technology Provider Cloud.ru opened a quantum laboratory’, TAdviser.ru.

Accessed: Apr. 01, 2024. [Online]. Available:

https://www.tadviser.ru/index.php/%D0%9A%D0%BE%D0%BC%D0%BF%D0%B0%D0

%BD%D0%B8%D1%8F:Cloud.ru_(%D0%9E%D0%B1%D0%BB%D0%B0%D1%87%D0

%BD%D1%8B%D0%B5_%D1%82%D0%B5%D1%85%D0%BD%D0%BE%D0%BB%D

0%BE%D0%B3%D0%B8%D0%B8)_%D1%80%D0%B0%D0%BD%D0%B5%D0%B5_S

berCloud

[13] ‘Comprehensive promotion in the Yandex ecosystem. Promotion in Yandex.Business,

Direct and Zen.’ Accessed: Apr. 01, 2024. [Online]. Available: https://www.site-

rb.ru/kompleksnoe-prodvizhenie-v-yandekse/

[14] ‘VK Ecosystem Services’. Accessed: Apr. 01, 2024. [Online]. Available:

https://vk.com/vk_ecosystem_services

[15] ‘Products of the MTS ecosystem’. Accessed: Apr. 01, 2024. [Online]. Available:

https://personal.mts.ru/

[16] ‘Amazon Ecosystem: a brief overview - Research-Methodology’. Accessed: Apr. 01, 2024.

[Online]. Available: https://research-methodology.net/amazon-ecosystem-a-brief-overview-

2/

Ширяев Е.М., Бабенко М.Г., Безуглова Е.С., Лапина М.А. Разработка системы тестирования точности и эффективности библиотек гомоморфного

шифрования для рациональных чисел с фиксированной мантиссой. Труды ИСП РАН, 2018, том 1 вып. 2, с. 15-19.

29

[17] B. P. Rimal, E. Choi, and I. Lumb, ‘A Taxonomy, Survey, and Issues of Cloud Computing

Ecosystems’, in Cloud Computing, N. Antonopoulos and L. Gillam, Eds., in Computer

Communications and Networks. , London: Springer London, 2010, pp. 21–46. doi:

10.1007/978-1-84996-241-4_2.

[18] ‘420 leaks of databases of Russian companies were recorded during the year’, TAdviser.ru.

Accessed: Apr. 01, 2024. [Online]. Available:

https://www.tadviser.ru/index.php/%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%

8F:%D0%A3%D1%82%D0%B5%D1%87%D0%BA%D0%B8_%D0%B4%D0%B0%D0%

BD%D0%BD%D1%8B%D1%85_%D0%B2_%D0%A0%D0%BE%D1%81%D1%81%D0

%B8%D0%B8

[19] S. Vinoth, H. L. Vemula, B. Haralayya, P. Mamgain, M. F. Hasan, and M. Naved,

‘Application of cloud computing in banking and e-commerce and related security threats’,

Materials Today: Proceedings, vol. 51, pp. 2172–2175, 2022.

[20] M. Nabeel, ‘The many faces of end-to-end encryption and their security analysis’, in 2017

IEEE international conference on edge computing (EDGE), IEEE, 2017, pp. 252–259.

Accessed: Apr. 01, 2024. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/8029288/?casa_token=sR8nOdFjE6YAAAAA

:sTh2ZzCH5i6m4WqJXBNoRwWdeP_S3_EF_OyBqyAVL1Pbv0pxy0gzz-

L66G48XC9V0F6eiNRnBafb

[21] A. Shamir, ‘How to share a secret’, Communications of the ACM, vol. 22, no. 11, pp. 612–

613, 1979.

[22] M. Mignotte, ‘How to share a secret’, in Workshop on cryptography, Springer, 1982, pp.

371–375.

[23] C. Asmuth and J. Bloom, ‘A modular approach to key safeguarding’, IEEE transactions on

information theory, vol. 29, no. 2, pp. 208–210, 1983.

[24] A. Tchernykh et al., ‘AC-RRNS: Anti-collusion secured data sharing scheme for cloud

storage’, International Journal of Approximate Reasoning, vol. 102, pp. 60–73, 2018.

[25] V. Miranda-López et al., ‘Experimental analysis of secret sharing schemes for cloud storage

based on rns’, in Latin American High Performance Computing Conference, Springer, 2017,

pp. 370–383.

[26] C. Gentry, A fully homomorphic encryption scheme. Stanford university, 2009.

[27] A. Al Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, and K. Rohloff,

‘Implementation and Performance Evaluation of RNS Variants of the BFV Homomorphic

Encryption Scheme’, IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 2,

pp. 941–956, Apr. 2021, doi: 10.1109/TETC.2019.2902799.

[28] J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No, ‘High-Precision Bootstrapping of RNS-

CKKS Homomorphic Encryption Using Optimal Minimax Polynomial Approximation and

Inverse Sine Function’, in Advances in Cryptology – EUROCRYPT 2021, A. Canteaut and

F.-X. Standaert, Eds., in Lecture Notes in Computer Science. Cham: Springer International

Publishing, 2021, pp. 618–647. doi: 10.1007/978-3-030-77870-5_22.

[29] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart, ‘Ring Switching in BGV-Style

Homomorphic Encryption’, in Security and Cryptography for Networks, vol. 7485, I.

Visconti and R. De Prisco, Eds., in Lecture Notes in Computer Science, vol. 7485. , Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 19–37. doi: 10.1007/978-3-642-32928-

9_2.

[30] ‘Microsoft SEAL’. Microsoft, Dec. 08, 2022. Accessed: Dec. 10, 2022. [Online]. Available:

https://github.com/microsoft/SEAL

[31] ‘OpenFHE.org – OpenFHE – Open-Source Fully Homomorphic Encryption Library’.

Accessed: Apr. 01, 2024. [Online]. Available: https://www.openfhe.org/

Shiriaev E.M., Babenko M.G., Bezuglova E.S., Lapina M.A. Development of a system for testing the accuracy and efficiency of

homomorphic encryption libraries for rational numbers with a fixed mantissa. Trudy ISP RAN/Proc. ISP RAS, vol. 1, issue 2, 2019. pp. 15-

19.

30

[32] ‘Homomorphic Encryption Standardization – An Open Industry / Government / Academic

Consortium to Advance Secure Computation’. Accessed: Dec. 10, 2022. [Online].

Available: https://homomorphicencryption.org/

[33] M. Babenko et al., ‘A Comparative Study of Secure Outsourced Matrix Multiplication

Based on Homomorphic Encryption’, Big Data and Cognitive Computing, vol. 7, no. 2, p.

84, 2023.

[34] J. J. Dongarra, P. Luszczek, and A. Petitet, ‘The LINPACK Benchmark: past, present and

future’, Concurrency and Computation, vol. 15, no. 9, pp. 803–820, Aug. 2003, doi:

10.1002/cpe.728.

[35] P. Luszczek et al., ‘Introduction to the HPC challenge benchmark suite’, 2005, Accessed:

Apr. 02, 2024. [Online]. Available:

https://escholarship.org/content/qt6sv079jp/qt6sv079jp.pdf

[36] A. Schwarzenberg-Czerny, ‘On matrix factorization and efficient least squares solution.’,

Astronomy and Astrophysics Supplement, v. 110, p. 405, vol. 110, p. 405, 1995.

[37] H. J. Nussbaumer, ‘The Fast Fourier Transform’, in Fast Fourier Transform and

Convolution Algorithms, vol. 2, in Springer Series in Information Sciences, vol. 2. , Berlin,

Heidelberg: Springer Berlin Heidelberg, 1982, pp. 80–111. doi: 10.1007/978-3-642-81897-

4_4.

[38] J. H. Cheon, A. Kim, M. Kim, and Y. Song, ‘Homomorphic encryption for arithmetic of

approximate numbers’, in International conference on the theory and application of

cryptology and information security, Springer, 2017, pp. 409–437.

[39] R. L. Rivest, A. Shamir, and L. Adleman, ‘A method for obtaining digital signatures and

public-key cryptosystems’, Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978, doi:

10.1145/359340.359342.

[40] T. ElGamal, ‘A public key cryptosystem and a signature scheme based on discrete

logarithms’, IEEE transactions on information theory, vol. 31, no. 4, pp. 469–472, 1985.

[41] A. Kim et al., ‘General bootstrapping approach for RLWE-based homomorphic encryption’,

IEEE Transactions on Computers, 2023, Accessed: Apr. 02, 2024. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/10261340/

[42] C. Gentry, ‘Fully homomorphic encryption using ideal lattices’, in Proceedings of the forty-

first annual ACM symposium on Theory of computing, Bethesda MD USA: ACM, May

2009, pp. 169–178. doi: 10.1145/1536414.1536440.

[43] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, ‘Fully homomorphic encryption

over the integers’, in Annual international conference on the theory and applications of

cryptographic techniques, Springer, 2010, pp. 24–43.

[44] ‘HEaaN’. Accessed: Apr. 02, 2024. [Online]. Available: https://heaan.it/

[45] A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal, ‘TenSEAL: A Library for Encrypted

Tensor Operations Using Homomorphic Encryption’. arXiv, Apr. 28, 2021. Accessed: Sep.

27, 2023. [Online]. Available: http://arxiv.org/abs/2104.03152

[46] W. Jenkins and M. Desai, ‘The discrete frequency Fourier transform’, IEEE transactions on

circuits and systems, vol. 33, no. 7, pp. 732–734, 1986.

[47] D. H. Mugler and R. A. Scott, ‘Fast fourier transform method for partial differential

equations, case study: The 2-D diffusion equation’, Computers & Mathematics with

Applications, vol. 16, no. 3, pp. 221–228, 1988.

[48] S. Li et al., ‘Falcon: A fourier transform based approach for fast and secure convolutional

neural network predictions’, in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2020, pp. 8705–8714. Accessed: Apr. 04, 2024. [Online].

Available:

http://openaccess.thecvf.com/content_CVPR_2020/html/Li_FALCON_A_Fourier_Transfor

m_Based_Approach_for_Fast_and_Secure_CVPR_2020_paper.html

Ширяев Е.М., Бабенко М.Г., Безуглова Е.С., Лапина М.А. Разработка системы тестирования точности и эффективности библиотек гомоморфного

шифрования для рациональных чисел с фиксированной мантиссой. Труды ИСП РАН, 2018, том 1 вып. 2, с. 15-19.

31

[49] T. Highlander and A. Rodriguez, ‘Very Efficient Training of Convolutional Neural

Networks using Fast Fourier Transform and Overlap-and-Add’. arXiv, Jan. 25, 2016.

Accessed: Apr. 04, 2024. [Online]. Available: http://arxiv.org/abs/1601.06815

[50] H. Pratt, B. Williams, F. Coenen, and Y. Zheng, ‘FCNN: Fourier Convolutional Neural

Networks’, in Machine Learning and Knowledge Discovery in Databases, vol. 10534, M.

Ceci, J. Hollmén, L. Todorovski, C. Vens, and S. Džeroski, Eds., in Lecture Notes in

Computer Science, vol. 10534. , Cham: Springer International Publishing, 2017, pp. 786–

798. doi: 10.1007/978-3-319-71249-9_47.

[51] H. M. El-Bakry and Q. Zhao, ‘Fast object/face detection using neural networks and fast

Fourier transform’, International Journal of Computer and Information Engineering, vol. 1,

no. 11, pp. 3748–3753, 2007.

[52] Y. He, H. Chen, D. Liu, and L. Zhang, ‘A framework of structural damage detection for

civil structures using fast fourier transform and deep convolutional neural networks’,

Applied Sciences, vol. 11, no. 19, p. 9345, 2021.

[53] J. Qi, J. Du, S. M. Siniscalchi, X. Ma, and C.-H. Lee, ‘On mean absolute error for deep

neural network based vector-to-vector regression’, IEEE Signal Processing Letters, vol. 27,

pp. 1485–1489, 2020.

[54] J. Qi, J. Du, S. M. Siniscalchi, X. Ma, and C.-H. Lee, ‘Analyzing upper bounds on mean

absolute errors for deep neural network-based vector-to-vector regression’, IEEE

Transactions on Signal Processing, vol. 68, pp. 3411–3422, 2020.

[55] A. Prošek, F. D’Auria, and B. Mavko, ‘Review of quantitative accuracy assessments with

fast Fourier transform based method (FFTBM)’, Nuclear Engineering and Design, vol. 217,

no. 1–2, pp. 179–206, 2002.

[56] ‘NTL: A Library for doing Number Theory’. Accessed: May 23, 2023. [Online]. Available:

https://libntl.org/

[57] ‘The GNU MP Bignum Library’. Accessed: Apr. 06, 2024. [Online]. Available:

https://gmplib.org/

Information about authors

Егор Михайлович ШИРЯЕВ – аспирант и ассистент кафедры вычислительной математики и

кибернетики Северо-Кавказского Федерального Университета. Его научные интересы

включают искусственные нейронные сети, криптография, гомоморфное шифрования, схемы

разделения секрета, модулярная арифметика, облачные вычисления.

Egor Mikhailovich SHIRYAEV – graduate student and assistant at the Department of

Computational Mathematics and Cybernetics of the North Caucasus Federal University. His

research interests include artificial neural networks, cryptography, homomorphic encryption, secret

sharing schemes, modular arithmetic, cloud computing.

Михаил Григорьевич БАБЕНКО – доктор физико-математических наук, доцент, заведующий

кафедрой вычислительной математики и кибернетики Северо-Кавказского Федерального

Университета с 2020 года. Его научные интересы включают искусственные нейронные сети,

криптография, гомоморфное шифрования, схемы разделения секрета, модулярная

арифметика, облачные вычисления.

Mikhail Grigorievich BABENKO – Doctor of Physical and Mathematical Sciences, Associate

Professor, Head of the Department of Computational Mathematics and Cybernetics of the North

Caucasus Federal University since 2020. His research interests include artificial neural networks,

cryptography, homomorphic encryption, secret sharing schemes, modular arithmetic, cloud

computing.

Shiriaev E.M., Babenko M.G., Bezuglova E.S., Lapina M.A. Development of a system for testing the accuracy and efficiency of

homomorphic encryption libraries for rational numbers with a fixed mantissa. Trudy ISP RAN/Proc. ISP RAS, vol. 1, issue 2, 2019. pp. 15-

19.

32

Екатерина Сергеевна БЕЗУГЛОВА - стажер-исследователь отдела теоретико-числовых

систем регионального научно-образовательного математического центра «Северо-

Кавказский центр математических исследований». Научные интересы: искусственные

нейронные сети, криптография, гомоморфное шифрования, схемы разделения секрета,

модулярная арифметика, облачные вычисления

Ekaterina Sergeevna BEZUGLOVA is a trainee researcher in the department of number-theoretic

systems of the regional scientific and educational mathematical center "North Caucasus Center for

Mathematical Research". Research interests: artificial neural networks, cryptography, homomorphic

encryption, secret sharing schemes, modular arithmetic, cloud computing

Мария Анатольевна ЛАПИНА - опытный специалист в области научных исследований и

международных отношений, в настоящее время занимающая должность заместителя

директора по международным связям и доцента кафедры информационной безопасности

автоматизированных систем. Она защитила кандидатскую диссертацию по математике в

Ставропольском государственном университете с отличием в 2005 году и получила ученую

степень доцента в 2009 году. Мария также имеет степень магистра в области

информационной безопасности в Северо-Кавказском федеральном университете с отличием,

полученную в 2015 году. Мария участвовала в международных стажировках в Римском

университете Сапиенца (Италия), Университет Любляны (Словения), Технический

университет Дрездена (Германия) и 2-я инновационная лаборатория высшего образования

ASEF (ASEFInnoLab) при Университете Фудань в Шанхае, Китай.

Maria Anatolyevna LAPINA is an experienced specialist in the field of scientific research and

international relations, currently holding the position of Deputy Director for International Relations

and Associate Professor of the Department of Information Security of Automated Systems. She

defended her PhD thesis in mathematics at Stavropol State University with honors in 2005 and

received an associate professor degree in 2009. Maria also holds a Master's degree in Information

Security from the North Caucasus Federal University with honors, obtained in 2015. Maria has

participated in international internships at Sapienza University of Rome (Italy), the University of

Ljubljana (Slovenia), the Technical University of Dresden (Germany) and the 2nd ASEF Innovation

Laboratory of Higher Education (ASEFInnoLab) at Fudan University in Shanghai, China.

