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Abstract—Domain-specific languages power numerous modern
applications and libraries, including but not limited to: Wolfram
Alpha, Microsoft Excel, Graphviz. This work aims to share
the experience gathered from developing TQL (Talisman Query
Language) — a domain-specific language used in Talisman
platform. Talisman platform is a set of tools to automate data
processing tasks, developed by Ivannikov Institute for System
Programming of RAS. TQL implementation, discussed in this
article, supports error-recovery, can be run directly inside a
browser as well as on a server, and it also has an interactive
playground that visualizes the parse tree while typing. This article
describes several techniques and technologies that were used to
make these qualities possible while keeping a single, maintainable
codebase.

Index Terms—Programming, Compilers, Domain-specific lan-
guages

I. INTRODUCTION

A domain-specific language (DSL) is a computer pro-
gramming language of limited expressiveness focused on a
particular domain. [1] There are multiple reasons why one
might choose to integrate a DSL in their application:

• It can be used by people, who are not familiar with the
traditional software engineering, but are familiar with the
application domain

• It can be used to limit actions that users can perform in
order to preserve security and privacy of other users

• It can be more expressive than general-purpose languages
in a particular domain

This work is based on the experience, gathered from devel-
oping TQL — a query language for Talisman platform. [2]
Talisman is a unified set of tools that automate typical data
processing tasks, such as data retrieval, integration, analysis,
storage and visualization. It is developed by Ivannikov Institute
for System Programming of RAS. One of the core components
of the platform is it’s knowledge base. It stores documents
that can be related to each other, they can be searched by
using both relational and full-text patterns. In order to allow
such search queries, data is stored in two different systems:
in a relational database (PostgreSQL) and a full-text search
system (Elasticsearch). Both have their own query languages,
which allow only one type of search. In order to combine
capabilities of both languages, a new domain-specific language
was developed — Talisman Query Language.

User experience for a DSL or any programming language
in general depends on the language support and tooling
surrounding it. The initial implementation of TQL included

only a parser for query execution, lacking language support
for users to write queries. This led to the following problems
while using the language:

• No syntax error reporting. When a user accidentally
forgot to close a bracket or made any other type of syntax
error, they would have to find this error manually. This
can be improved by reporting which tokens in a query
led to a syntax error.

• Difficult to navigate inside complex queries. When hav-
ing a complex query with nested selectors, it becomes
troublesome to identify, which part of the query is nested
inside which selector. This can be improved by highlight-
ing keywords and highlighting matching brackets with the
same color.

• Having to read the manual to recall the correct keyword.
While being powerful, TQL has a lot of keywords that
one needs to learn in order to use it efficiently. Suggesting
keyword completions can ease that learning curve for
users.

A solution based on the existing TQL parser was considered,
but it had the following technological limitations:

• Language parser did not include error recovery, so it
could only find the first syntax error.

• Parser could only be run in the same environment as the
rest of Talisman backend: on a server.

Based on these issues, it was decided to create a new TQL
implementation.

The primary focus of this article is to demonstrate how a
single implementation of a DSL can offer a seamless editing
experience within a browser, while also being utilized on a
server for processing user programs. Attempting to meet these
requirements poses several challenges, which are outlined in
this article along with the solutions employed by the new TQL
implementation.

II. BACKGROUND

A. Parser implementation

There are several choices when implementing a parser:
• Implementing it manually
• Using a combinator library
• Using a parser generator
A manual implementation provides developers with the

highest degree of flexibility and control over parser behavior.
It allows implementing custom error recovery mechanisms



and choosing any parsing algorithm. However this flexibility
comes at a cost: manual parser implementations tend to be
repetitive and error-prone.

Combinator libraries provide useful building blocks for
building a parser. These libraries make parser code easier
to read and more composable: each parsing routine is a
combinator, that can be then used in other combinators. This
approach is less flexible than the manual one: combinator
libraries are built on some particular parsing algorithm. Also
they tend to have problems with error recovery, but more on
this later.

Parser generators use the most automated approach: they
accept a formal grammar as an input and generate a parser au-
tomatically. Generators usually have some ways to customize
the resulting parser with user-written code, but these capabil-
ities are limited compared to manual parsing and combinator
libraries. Error recovery capabilities are usually limited with
some set of predefined options, that can be customized only
to some degree.

B. Error recovery in combinator libraries

Traditionally, combinator libraries and parser generators
implemented some variations of LR parsing. This approach
gives some flexibility in expressing a language grammar:
for example it allows left-recursive rules. However, it makes
writing custom error recovery difficult. Usually libraries and
generators provide some predefined strategies for error recov-
ery. These strategies are usually enough for error reporting, but
not for providing completions. This is one of the reasons, why
popular language servers implement manual recursive-descent
parsers with custom recovery logic.

There are some combinator libraries, that use recursive
descent algorithm and provide capabilities for custom recovery
logic: megaparsec [3] for Haskell and chumsky [4] for Rust.
Recursive descent imposes some limitations on grammar: for
example it does not allow left-recursive rules. Other than that,
this approach provides usability of combinator libraries with
flexibility of manual parsing.

C. CST vs AST

The initial implementation of TQL parsed a query directly
into an abstract syntax tree (AST). AST is a tree, representing
a program’s structure. As an example, if-then-else node would
have three children: a condition, a positive branch and a
negative branch. This structural information is necessary to
analyze and execute the program. AST is an appropriate
abstraction for executing a query, but is not appropriate for
providing editor support. While editing a query, most of the
time, user input won’t be syntactically correct, so AST cannot
be built. In such contexts, concrete syntax tree or CST is often
used. Unlike AST, each token of original input is included
in CST with it’s coordinates (row, column) from the original
input. When a parser cannot parse the program, it might skip
some tokens, presenting them as an error node. This way a
partial tree can be built and analyzed.

In TQL implementation both CST and AST are used:

Fig. 1. Language Server Protocol

• Initially, a parser produces a CST, which can be partial
in case of syntax errors. This tree is used to provide
language support while editing.

• In case no syntax errors were discovered, CST can be
transformed to an AST. It is used by Talisman backend
for executing a query.

D. Language server protocol

Features like syntax highlighting and autocomplete are
provided by code editors and IDEs, in this section we will
look into problems that they face and solutions that emerged
over time.

Language support has been traditionally provided for each
editor individually. Usually, that would require developing
a plugin for each editor, using different technologies and
architecture. This leads to duplication of efforts: adding a
single feature has to be done separately for each supported
editor. Inconsistency is an another issue with this model: each
editor might have different language features available.

These problems led to the creation of Language Server
Protocol [5] or LSP for short. It was created by Microsoft
for Visual Studio Code editor in 2016 and since then became
an industry standard for providing language support. This
protocol defines messages that a language client (an editor) and
a language server use to communicate with each other. These
messages are language-independent, treating a program as a
text file and utilizing text coordinates (rows and columns). This
protocol allowed editor developers to implement it, benefiting
from all language servers that also implement it. Developers
working on editor support could now implement language
features once and benefit from all the editors implementing
a client.

Figure 1 shows messages defined by LSP, that client and
server send each other.

We’ve decided to use this protocol to provide language
support for TQL. It allows integrating our language with any
tooling that also implements this protocol.

III. RELATED WORK

One tool that can be used to create compiler frontends is
Bison [6]. In order to use it, one must describe a grammar and
semantic actions that correspond to different grammar rules.
Bison tool then generates a parser that uses GLR algorithm
in order to process inputs. However, LR parsers tend to be



less error-resilient than recursive-descent ones, as shown in
this [7] article. Error-resilience is an important property when
it comes to language servers, that is why this work does not
use an LR parser generator.

Not all parser generators use variations of LR algorithm.
One prominent example that does not use it is ANTLR [8].
Generated parsers implement LL(*) algorithm, which uses top-
down approach. ANTLR has a few built-in error recovery
strategies and it allows implementing custom ones. Built-in
strategies use generalized algorithm, that can produce decent
results, but the best error recovery can be achieved by using
custom error strategies for different rules. Each rule in the
generated code is wrapped in a try/catch block that, in case of
an error, reports it and attempts to recover. However, recover-
ing from low-level rules can produce undesirable syntax trees
as these rules may lack some context that higher-level rules
have. In order to disable this behaviour, one must explicitly
rethrow an error in all such rules. This clutters the code and
makes it less maintainable. In a manual parser, errors might be
handled only in rules where it is relevant, avoiding clutter in
rules where it is not. While ANTLR theoretically has enough
flexibility to implement different error recovery strategies for
different rules, it makes it quite difficult in practice, as it is not
an intended use case. Xtext [9], that was specifically created to
make writing language servers easier, uses ANTLR for parsing
and thus suffers from the same problems.

IV. IMPLEMENTATION

A. Requirements

The new implementation of TQL, that we will call TQLS
(Talisman Query Language Server), had to meet the following
requirements:

• It had to provide an HTTP API to be used programmat-
ically and a frontend library to be used directly in user’s
browser

• Language implementation should support:
– Error reporting
– Syntax highlighting
– Autocomplete

• It had to be integrated with the main Talisman backend
These requirements determined technologies and techniques

used to implement the language.

B. Introduction to TQL

TQL is used to search for entities in Talisman knowledge
base. Most common entity types include:

• Document — a piece of information that was retrieved
from some source.

• Concept — an entity, that is known to the knowledge
base. Concepts can be mentioned in documents.

• Link — represents a connection between two concepts.
Concepts and links form a typed labeled property graph.

Each concept and each link has a type, that determines their
properties. Consider the following example: document might
mention two people, that are known to the knowledge base

as concepts. These concepts would have type “person”. Two
people might have a link of type “friendship”, that links them
together. Concepts of type “person” might have properties like
name, birth date, gender, etc. Links of type “friendship” might
have a property that says when this friendship was established.

TQL operators can be divided into the following groups:

• Full-text operators are used to search in the text repre-
sentation of documents.

• Relational operators are used to find entities based on
their properties and their relations to other entities.

• Universal operators can be applied both to full-text and
relational expressions

Queries below illustrate some full-text operators:

• apple — searches for documents that contain word
“apple”.

• -apple — searches for documents that do not contain
word “apple”.

• apple∼ — searches for documents that contain “apple”
using fuzzy search.

• "apple pie"∼1 — searches for documents that con-
tain phrase “apple pie” with at most one word between
them.

The following queries demonstrate relational operators:

• concept(apple) — searches for documents mention-
ing a concept named “apple”.

• concept.[fruit](apple) — the same as above,
but this concept should have a type “fruit”.

• identifier=OK-1 — searches for a document with
the identifier “OK-1”

• concept(document(identifier=OK-1)) —
searches for documents that mention some concept that
is also mentioned in a document with the identifier
OK-1. Selectors can be nested inside each other.

Queries below demonstrate universal operators that can be
used with both full-text and relational expressions:

• concept(apple) fruit — searches for documents
mentioning a concept named “apple”, while also contain-
ing a word “fruit” in them. Logical “and” is represented
as a space.

• concept(apple),fruit — searches for documents
mentioning concept named “apple”, or containing a word
“fruit” in them. Logical “or” is represented as a comma.

• concept(apple) (fruit,food) — searches for
documents mentioning a concept named “apple” and
containing a word “fruit” or “food” in them. Parentheses
change evaluation order. By default, “and” has a higher
priority than “or”.

Evaluation of TQL queries is performed by the Talisman
backend and is beyond the scope of this work. One important
consideration is that TQL queries are not compiled ahead-of-
time to SQL and Query DSL. Instead, the resulting AST is
evaluated by Talisman backend in a bottom-up manner, using
the appropriate search mechanism at each step.



C. Language as a Service

It might seem natural to include a DSL implementation into
the host application’s codebase. However, treating a DSL as a
separate product provides several benefits:

• One might choose a more appropriate tech stack for
implementing a DSL

• It allows using a DSL in different environments: i.e.
inside a native app, on a website and on a server.

• Makes it easier for a different team to work on the project:
they can use a different release schedule, version control
and tooling.

For the remaining of this work, we will be calling this
approach “Language as a Service” or LaaS. LaaS allows one
to design and implement a DSL separately from designing and
developing the host product. Modern applications tend to be
multi-platform: there can be a native application, a website and
an HTTP API. By abstracting away platform-specific details,
one might focus on making a better DSL. API for integrating
with platform-specific code tends to be a thin wrapper of this
core abstract API. Later we will discuss possible technology
choices, that allow such integrations.

D. Running TQLS inside a browser

Editors, providing language features like autocomplete, that
were examined during our research made requests to a remote
server for providing completions using either HTTP or Web-
Socket protocol. This approach leads to more delay before
providing completions due to network requests, requires a
constant Internet connection and creates more load on servers.
This is why one of the design goals for TQLS was being able
to run it inside a browser.

Traditionally, writing something for the browser assumed
a particular tech stack: HTML, CSS and JavaScript. While
these technologies still power the majority of the web, there
are some new ones that allow using a different stack. One of
the most prominent ones is WebAssembly. It defines a special
binary format that is supported in modern browsers, that
can be executed safely inside a sandbox. Different languages
support compilation in WebAssembly which allows a wider
tech stack choice. These binaries can be distributed using
conventional npm packages which makes it easy to use for
frontend developers.

E. Running TQLS on a server

While language features like providing completions can
be run inside a browser, there still was a need in pro-
viding a server access to parser. Talisman backend had an
old implementation of TQL parser. Supporting two different
parsers written in two different programming languages would
impose a huge burden on the developers and would lead to
inconsistencies between language support for the user and for
executing queries. TQLS uses GraphQL [10] API for exposing
a backend API.

GraphQL has several benefits over traditional REST APIs:
• API clients can be generated from the schema

• Schema can be automatically validated against having
breaking changes

• There is no need to write a separate endpoint for each
possible query. Server exposes all the data it has available
and client selects the exact subset it needs

Tree is represented as a flat list, where each element has
a unique identifier. Different element types have different
GraphQL types, all of which implement Element interface.

type Tree {
rootId: String
nodes: [Element!]!

}

interface Element {
data: Metadata!

}

type Metadata {
id: String!
start: Int!
end: Int!

}

F. Error recovery

Error recovery is implemented as a set of heuristics, that
are based on common usage patterns for TQL. Error recovery
may add two additional node types to the resulting CST:

• Skipped tokens — tokens that were skipped by parser.
These tokens are still preserved in a tree, providing more
context for code completion.

• Recovered tokens — these tokens are not present in the
query, yet they were expected and were added in the tree
by a parser, preserving a correct tree structure.

The following is an example of a heuristic, used by TQLS:
whenever a parser encounters a closing parenthesis after the
left part of the equation (an identifier and an equation sign),
it does not skip it, but instead adds a recovered operand in a
tree and continues parsing as normal. This way, less input
is skipped and the resulting tree is more useful for code
completions generation.

Figure 2 shows an example of a CST for a query
$$$ (test=). Both types of additional nodes were added
by the error recovery procedure. Unquoted dollar signs are not
allowed, that is why they were skipped. After an equals sign,
a parser encountered a closing parenthesis and it inserted a
recovered operand in a tree.

In order to report errors to the user, a recursive procedure
searches tree for both types of nodes and combines them in a
single list. For the above example, two errors will be reported:

1. Start: 0 | End: 3 | Found: $$$ |
Expected: expression↪→

2. Start: 10 | End: 11 | Found: ) |
Expected: operand↪→



Fig. 2. CST with skipped and recovered tokens

G. Code completion
Code completion procedure takes a query and a cursor

position as an input and returns a list of completions as
an output. Each completion is a text range and a string,
that should replace that range if the completion is accepted.
Completion procedure is split into two stages:

1) Determine a completion context. Completion context
consists of a range inside a query and the current
selector. The current selector is the innermost selector,
that surrounds the cursor.

2) Make a list of completions based on the provided
context.

In order to find a completion context, the first step is to find
a token under cursor in a tree. To do that, a recursive procedure
iterates through root’s children from left to right and makes
a recursive call if cursor is contained within a child node’s
range. This way, if cursor is placed between two tokens, the
left one will be chosen by the procedure. This is due to the fact,
that completion is expected to finish token before the cursor,
not after. Token and it’s ancestors are then used to determine a
completion context. An example, where the found token is not
an entire completion context, is when dealing with multi-word
properties, which are written in quotes. Consisting of several
tokens, they should be considered a single completion context.

After completion context is found, it’s text is compared with
known keywords. A list of available keywords is determined
by the current selector.

H. Programming language
TQLS uses Rust as an implementation language. Rust was

chosen due to the following reasons:
• Chumsky combinator library uses recursive descent algo-

rithm and allows custom error recovery strategies.
• Robust support for WebAssembly, allowing it to run in a

browser

• Algebraic Data Types (enums) which are useful for
modelling syntax trees

• Robust GraphQL support, which allows implementing a
backend API

Rust-analyzer [11] was used as a source of inspiration for
designing TQLS.

I. Type-safe CST API

Parser produces a concrete syntax tree, which reflects gram-
mar rules. Unlike AST, CST is what we call a homogeneous
tree: each node uses the same structure in code. Code below
demonstrates structures used to represent this tree in a pro-
gram:
struct Node {

kind: NodeKind,
meta: NodeMetadata,
children: Vec<Child>,

}

enum Child {
Node(Node),
Token(Token),

}

struct Token {
kind: TokenKind,
meta: NodeMetadata,
text: String,

}

Using the same node type for all tree nodes simplifies
writing general tree traversal algorithms. However, when one
needs to work with a specific node type, this API can be error-
prone. On top of this API, there is a type-safe API which is
generated from the tree description. This description is written
in Ungrammar [12] format.



As an example, let’s take a look at the following nodes:
AndExpr = Factor (' ' Factor)*
Factor = StructOperators

| FlatFactor
| ElementParens

Custom source generator will generate the following struc-
tures:
struct AndExpr<'a> {

node: &'a Node,
}

impl<'a> AndExpr<'a> {
fn get_factor_list(&self)

->
Vec<Factor<'a>> {

tree::get_children_with_type(
self.node

)
}

}

enum Factor<'a> {
StructOperators(StructOperators<'a>),
FlatFactor(FlatFactor<'a>),
ElementParens(ElementParens<'a>),

}

There are currently over 70 node types in an Ungrammar
description and more than 3500 lines of code generated from
it. Writing this code manually would be error-prone and since
the tree structure can change over time, updating this file
manually will be a maintenance burden.

J. Interactive playground

In order to debug and test TQLS, an interactive playground
application was developed. It runs inside a browser using
WebAssembly. This way, it is possible not only to test our
application and visually validate the resulting tree, but also to
ensure that the exposed API is sufficient and is easy to use. In
order to render tree in a browser, TQLS serializes it as a DOT
graph and playground renders it using a graphviz library.

Figure 3 shows an AST for a query
SYRCoSE, Young Researchers rendered inside a
playground.

V. CONCLUSION

This work describes our experience developing and inte-
grating a DSL with the rest of our services. Our focus was
on making it maintainable and portable, here is a summary of
our solutions to this problem:

• Treating a DSL as a separate application with it’s own
architecture and tech stack

• Using CST for editor support and AST for executing
queries

• Implementing Language Server Protocol to integrate with
any tools supporting it

Fig. 3. Interactive playground

• Using WebAssembly to run TQLS in a browser
• Using GraphQL to run TQLS on a server
• Using Rust programming language to implement our

design
• Generating type-safe CST API from Ungrammar descrip-

tion
• Using interactive playground to test and debug TQLS
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