
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Implementing a Persistent Key-Value Storage

Engine to Improve the Efficiency of Sequential Data

Reading

Aleksandra Tkachenko

Institute of Computer Science and Cybersecurity

Peter the Great St.Petersburg Polytechnic University

St.Petersburg, Russia

tkachenko3.aa@edu.spbstu.ru

Nikita Voinov

Institute of Computer Science and Cybersecurity

Peter the Great St.Petersburg Polytechnic University

St.Petersburg, Russia

voinov@ics2.ecd.spbstu.ru

Abstract—The article is devoted to development of a

persistent key-value storage engine which implements a new

approach to sequential data reading. The main idea of the

proposed approach is clustering recently updated keys at the

beginning of their data file so that the operating system would

cache only this part of the file instead of caching the whole file

improving the efficiency of sequential data reading.

Experimental results of the developed storage engine

implementing the proposed approach proved that it can be

particularly efficient in case of a limited set of keys with a fixed

size of values when fast sequential search is required.

Keywords—key-value, storage engine, sequential data

reading, efficiency, database

I. INTRODUCTION

Today the increasing volume of data and its critical
importance for a business or organization emphasize the
need of efficient data storage systems [1]. Data storage
becomes a fundamental aspect since unsaved facts and
information are unavailable for analysis and useless to the
enterprise. The presence of systems capable of processing,
storing and managing large volumes of data as well as
extracting valuable knowledge from them, becomes an
integral factor for making management decisions and
optimizing business processes [2]. In the context of growing
demand, fast data retrieval becomes especially important.
Companies shall make decisions quickly based on up-to-date
data as delays in accessing information can seriously affect
the efficiency of the enterprise and its processes. To avoid
such delays and ensure quick access to data, it is necessary to
have an optimized data storage system [1].

There are many different data storage technologies
including traditional relational databases, NoSQL databases,
distributed file systems and cloud data warehouses [3].
Traditional relational databases can be a suitable choice for
structured data and tasks that require ACID compliance,
offering strong data schema and providing complex
operations using SQL queries. However, the explosive
growth of unstructured data in recent years has become one
of the main reasons why relational databases no longer meet
the needs of some companies facing with performance and
scalability limitations [4]. To work with such data NoSQL
solutions are actively used. They do not have a data schema
and provide horizontal scaling [5]. Specific key-value
storages can be used to store data that does not require
complex processing but needs high access speed. In this case
using an embedded persistent key-value storage engine that

runs directly within the application can be especially
efficient. This can reduce the overhead of communication
with a remote database server and delays on data access as
well as improve the performance of the entire system.

Solutions for fast data processing and disk space
management, which can serve as analogues of the proposed
approach, include optimization within file systems (FAT,
NTFS, ext4, etc.), where specific methods are used to
increase the speed of disk space processing such as clustering
similar files, using metadata structures to efficiently retrieve
data, and using caching mechanisms like LRU to reduce disk
I/O operations. Also, indexing techniques are used in
databases to speed up data retrieval by creating index
structures: B-trees, hash indexes and bitmap indexes
organize data to minimize the need for random disk
access (which is similar to clustering frequently used keys).
Finally, deduplication can be used. However, this work is
specifically focused on creation of a data storage subsystem.

The main goal of the work is to improve the efficiency of
sequential data reading by developing a persistent key-value
storage engine based on a new approach of clustering
recently updated keys at the beginning of the data file. The
developed solution can be used within optimization of
existing data storage and processing systems or construction
of new ones to achieve the following expected benefits:

 improvement of the overall performance since
sequential reading can be significantly more efficient
than random access [6,7];

 reduction of overhead costs due to the fact that the
storage engine works directly within the application,
which reduces the overhead costs of communication
with a remote database server, reduces delays when
accessing data and increases system responsiveness;

 simplified deployment and maintenance because
there is no need to install and configure a separate
database server, which reduces infrastructure
complexity and simplifies data recovery, which is an
important factor for ensuring data security in
applications.

II. OVERVIEW OF EXISTING SOLUTIONS

Based on the exploring of relevant web-resources such as
DB-Engine, Database of Databases (DoDB), Thoughtworks
Technology Radar and Google Trends which provide
rankings and compare popularity of miscellaneous software

tools, the following solutions were selected for further
analysis: LevelDB [8], RocksDB [9], LMDB [10], Oracle
Berkeley DB [11], BoltDB [12] and WiredTiger [13]. All
these subsytems for persistent data storage have key-value
and schema-free data model. This means that data is stored
as key-value pairs where each key has a corresponding value.
The absence of a data schema allows storing a variety of data
types without first defining their structure or schema. This
approach provides flexibility in storing and processing
heterogeneous data and simplifies adding, changing or
deleting data without the need to update the entire schema
[4].

A common feature for all mentioned solutions is
immediate consistency. It provides a simple data consistency
model where written data is immediately available for
reading and therefore has low latency since it does not
require additional coordination or waiting operations. The
main advantage is that the implementation of this type of
consistency in the data storage engine is relatively simpler
compared to other types which allows the use of simple
mechanisms for writing and reading data. This consistency is
useful for applications where data relevance is a priority
while writing conflicts and concurrency are unlikely or
unimportant.

Durability is ensured by Write-Ahead Logging (WAL).
This mechanism guarantees data integrity, improves
performance and ensures transaction stability. Data is written
to the log first and then merged asynchronously with
persistent storage which reduces write latency and increases
speed [14]. WAL is also easy to implement and allows
restoring the state of data in case of a system failure.

The main feature of the considered solutions is key-value
data model. Data can be organized into key-value pairs that
are stored on disk in corresponding data files. An index file,
on the other hand, is used to quickly find keys in a data file.
Typically the index file contains a data structure that maps
the keys to their corresponding offsets in the data file where
the corresponding values are located. That is, when searching
for a value by key, the index file is first accessed to find the
offset in the data file where the corresponding value is
located. The value is then retrieved from the data file and
returned to the user.

Choosing an index data structure to implement a storage
engine, such as B-tree, Log-Structured Merge (LSM) tree or
hash table, involves a number of trade-offs that depend on
the specific use case and database requirements. LSM is well
suited for write-intensive and read-intensive scenarios. B-tree
is well suited for scenarios with a steady flow of writes and
reads, where high performance support for data lookups and
updates is required. A hash table is well suited for scenarios
with high key search intensity and relatively low data update
intensity, in addition, it excludes range queries and may be
less efficient when working with large volumes of data.

For storages implemented on a B-tree or LSM sequential
read performance is lower than for simple reading a file from
an SSD [6]. This is because B-tree and LSM stores require
additional operations to find keys and values in the data
structure such as traversing tree levels or merging sorted
lists. In addition, LSM requires sorting all the data which can
take considerable time when adding new records. While
simply reading a file from an SSD does not require
additional operations to look up keys and values and can be

performed sequentially without additional I/O operations.
This provided higher speed of sequential reading.

With a large flow of input operations LSM trees may
encounter the problem of write amplification, which leads to
increased disk load due to frequent writes and merging of
fragments. If the data is poorly compressed, LSM trees may
require more disk space, which will also affect read and write
operations. Additionally, when reading large amounts of
data, LSM trees can have performance issues due to the need
to scan multiple levels of the tree to retrieve data, while
optimized serial I/O solutions can perform faster reads due to
linear data access. Also, with a large number of requests to
update or delete data, LSM trees may encounter a
fragmentation problem, which will lead to performance
degradation due to the need to perform additional merge
operations. None of the storage subsystems can provide the
same sequential read speed as simply reading a file from an
SSD. Most storage engines are based on LSM, which
requires all data to be sorted and does not provide an optimal
way to cluster recently updated keys together. Although
some keys are frequently updated and queried, LSM-based
stores require all of their information to be cached within the
operating system in a file cache.

Using simple disk operations instead of multi-level
caching and restructuring makes sense in a number of
specific scenarios. For example, a solution based on
sequential I/O disk operations is easier to implement and
support, especially in the case of small projects or
applications with a limited development budget. If the data is
rarely changed, using multi-level caching and restructuring
may be overkill. Simple disk operations can be more
efficient in this case, since they do not require additional
effort to update caches.

So the analysis of existing solutions revealed that none of
them can provide the same sequential reading speed as a
simple reading a file from an SSD. Most storage engines are
based on LSM which requires all data to be sorted and does
not provide an optimal way to cluster recently updated keys
together. Although some keys are frequently updated and
queried, LSM-based storages require all of their information
to be cached within the operating system in a file cache.

To solve this issue a new approach is proposed which
consists in clustering recently updated keys at the beginning
of their data file so that the operating system would cache
only this part of the file instead of caching the whole file
improving the efficiency of sequential data reading.

III. IMPLEMENTATION OF THE PROPOSED APPROACH

The developed persistent key-value storage engine
StorageDB [15] implementing the proposed approach is
based on the following functional features:

 a fixed key and value size (which allows the use of
an offset-based indexing strategy);

 the data is stored in a flat file with synchronization
markers every few records;

 when the database is opened, an index is created
through sequential scanning (the index contains
information about the key and its last location in the
file);

 when new data is written, it is only added to the end
of the file and the index is updated accordingly;

 when a database is opened, an index is created
through a sequential scan. The index contains
information about the key and its last location in the
file;

 for sequential data scanning, a reverse pass through
the record log (WAL) occurs first and then a direct
pass through the data file; since the newest data is at
the end of the WAL, the traversal is performed in
reverse order which allows sequential access to the
data without affecting the index (less CPU load);

 for random access the data is located by offset;

 when implementing the consolidation strategy, data
from the old file is overwritten to the new one while
the newly updated keys are collected at the
beginning of the new file.

High-level architecture of the developed storage engine is
presented in Figure 1.

StorageDBBuilder is an implementation of the Builder
pattern for co-building an instance of the StorageDB class.
StorageDB is a part of the storage engine and provides
functionality for database management. This structural
element provides a convenient way to configure and create a
StorageDB instance with specified configuration parameters,
allowing flexible storage management.

StorageDB [15] is an implementation of a key-value store
database. It provides methods for reading, writing and
manipulating data in a database. The main purpose of this
class is to efficiently store and retrieve key-value pairs, as
well as perform database compression and recovery from
failures using files to store data, transaction logs and a buffer
to temporarily store records before writing them to disk. It
uses IndexMap to track the location of each value in a data
file or WAL file by mapping keys to data offsets in the files.
It also uses a buffer to optimize writes and periodically
flushes the buffer to disk. In addition, it implements a
background thread for compaction (combining data files to
reduce the number of small files and improve read
performance) and allows the use of a thread pool to perform
background ExecutorService operations.

Fig. 1. High-level architecture of the developed storage engine

Fig. 2. Use-case diagram with a function call to determine the storage size

Config and CompactionState are needed to set system
parameters. Also implemented are utilities for working with
files, a number of additional exceptions and utilities for data
recovery and address calculations.

Buffer is used to write data to a WAL write log file and
then write it to disk. It is designed to work with a record
buffer in RAM. The buffer is a logical extension of the WAL
file, and if the index points to an offset greater than that of
the actual WAL file, then the data is assumed to be in the
write buffer. This class performs the following:

 Represents a buffer that is used to temporarily store
records before they are written to disk. It serves as
intermediate storage for data changes that will later
be written to permanent storage (in a WAL file).

 Provides methods for performing read and write
operations on a buffer. It allows adding new records
with specified keys and values to the buffer, as well
as updating existing records by key.

 Manages the allocation and release of memory for
storing entries in the buffer. It allocates sufficient
memory to store records based on the specified
configuration and record sizes.

 Responsible for inserting synchronization markers
into the buffer to ensure data integrity when written
to disk. Synchronization markers help track record
block boundaries and ensure data integrity when
read.

 Provides methods for sequentially accessing entries
in a buffer. This is convenient for performing
traversal operations or processing entries in a buffer.

A use-case example demonstrating a function call to
determine the storage size is presented in Figure 2.

First, an instance of the StorageDB object is created
using the Builder pattern, performing several

configurations (1.1, 1.2, 1.3 in Fig.2). The build() call creates
and returns an instance of the StorageDB object with the
specified configuration parameters. During the execution of
this construct, an implementation of the default index
structure (1.4.1.1), WAL (1.4.1.2) and a pool of objects for
file management (1.4.1.3) is created. Next, the test calls for
the database size (1.5). At the end, db.close() is called to
close the database after the test is run. This is important for
properly freeing resources and preventing memory leaks. As
part of this process, the flush() method (1.6.1) is called,
which performs the operation of resetting the write buffer to
the permanent record log storage (WAL) and performs some
checks and status updates, in which the flush() of the Buffer
class is used to write data from the buffer to the output
stream and clear() is used to clearing the buffer by setting it
to its original state.

The required software [15] was implemented with Java
programming language. Maven was used as a build system,
SLF4J as a logging framework, Logback-Classic as a logger,
JUnit for testing, Mockito and Trove4j for optimized and
efficient collections, JMH for measuring performance,
JaCoCo for measuring code coverage, Apache Commons
Pool 2 for resource pool management.

IV. RESULTS

To assess the efficiency of the developed storage engine
its performance was compared with one of the most popular
existing solutions - RocksDB, which occupies leading
positions in various ratings. It has been noted by experts and
data storage specialists as one of the most efficient and
productive solutions in its category. Quantitative
measurements carried out in the selected use case showed
significantly better performance of this solution compared to
other analogues [16-19].

LSM trees commonly used in NoSQL databases are
designed to efficiently handle keys and values of varying
sizes, but the approach proposed in the paper targets a
specific use case where fixed key and value sizes are feasible
and beneficial for the scenario. While LSM trees are
excellent at handling dynamic key and value sizes, they may
not always be the most suitable solution for scenarios where
predictable performance and optimized disk usage have the
highest priority. The proposed approach offers an alternative
solution tailored to specific requirements. Comparison with
LSM trees was used just to highlight the specific results of
the proposed method with no intention to position it as a
direct competitor to LSM-based solutions.

Fig. 3. Performance of the developed storage engine (green) and RocksDB

(blue) on the measured metrics

To validate the functionality of the developed solution a
singleflow test was conducted that included processing of a
dataset consisting of 100 million 4-byte keys paired with
corresponding 28-byte values, similar in its structure to the
use case described in [20]. To obtain the results JMH (Java
Microbenchmark Harness) was used, which is a popular tool
for microbenchmarking in Java, as well as the following
hardware: AMD Ryzen 5 2500U with Radeon Vega Mobile
Gfx, 8 CPU, 8 GB RAM. The test was aimed primarily at
verifying the functionality of the developed storage engine
rather than providing a comprehensive benchmark against
existing solutions. Tests on replace or removal operations has
not been executed.

The results are presented in Figure 3 in the form of a
histogram that displays the performance of two solutions
based on the measurements. It’s worth noting that the test
was not intended to serve as a thorough comparison against
existing solutions. It was rather designed to demonstrate the
functionality of the developed storage engine under basic
conditions.

V. CONCLUSION

Described in the paper is the persistent key-value storage
engine which implements a new approach to sequential data
reading. The main idea of the proposed approach is
clustering recently updated keys at the beginning of their
data file so that the operating system would cache only this
part of the file instead of caching the whole file improving
the efficiency of sequential data reading.

The developed storage engine can be particularly
efficient in cases with a limited set of keys with a fixed size
of values when fast sequential search is required. The results
obtained are important because key-value data is the main
tool for many similar systems while their internal
implementation is modestly covered in the literature.

While demonstrated results indicate promising
performance gains, further benchmarking against existing
solutions with similar fixed-length key-value structures
would provide a more comprehensive understanding of the
developed solution's comparative performance. Futher it is
planned to incorporate more robust testing methodologies,
including diverse datasets and workload scenarios, to assess
the stability and scalability of the proposed approach.
Possible improvements to the developed software include
less common data structures for data storage and indexing to
speed up data access and reduce system load and more
complicated testing to detect its bottlenecks.

REFERENCES

[1] B. Denisenko, M. Tyanutov, I. Nikiforov, and S. Ustinov, "Algorithm
for calculating TCO and SCE metrics to assess the efficiency of using
a data center," Proceedings of the SPIE, vol. 12564, 1256403, Jan.
2023. DOI: 10.1117/12.2669285

[2] N. J. Ogbuke, Y. Y. Yusuf, K. Dharma, and B. A. Mercangoz, "Big
data supply chain analytics: ethical, privacy and security challenges
posed to business, industries and society," Production Planning &
Control, vol. 33, no. 2-3, pp.123-137, Feb. 2022.

[3] S. Huang, Y. Qin, X. Zhang, Y. Tu, Z. Li, and B. Cui, "Survey on
performance optimization for database systems," Science China
Information Sciences, vol. 66, no. 2, p.121102, Feb. 2023.

[4] W. Khan, T. Kumar, C. Zhang, K. Raj, A. M. Roy, and B. Luo, "SQL
and NoSQL database software architecture performance analysis and
assessments – A systematic literature review," Big Data and
Cognitive Computing, vol. 7, no. 2, p.97, May 2023.

[5] A. Ali, S. Naeem, S. Anam, and M. M. Ahmed, "A state of art survey
for big data processing and nosql database architecture," International
Journal of Computing and Digital Systems, vol. 14, no. 1, pp.1-1,
May 2023.

[6] M. Kleppmann, "Designing Data–Intensive Applications," O'Reilly
Media, 611 p., 2017.

[7] C. F. Andor, "Runtime Metric Analysis in NoSQL Database
Performance Benchmarking," in 2021 International Conference on
Software, Telecommunications and Computer Networks (SoftCOM),
Sep. 2021, pp. 1-6.

[8] LevelDB [Online]. Available: https://github.com/google/leveldb
[Accessed: May 06, 2024].

[9] RocksDB [Online]. Available: https://github.com/facebook/rocksdb
[Accessed: May 06, 2024].

[10] LMDB [Online]. Available: www.symas.com/symas-embedded-
database-lmdb [Accessed: May 06, 2024].

[11] BerkleyDB [Online]. Available:
www.oracle.com/technetwork/database/database-
technologies/berkeleydb/overview/index.html [Accessed: May 06,
2024].

[12] BoltDB [Online]. Available: https://github.com/boltdb/bolt
[Accessed: May 06, 2024].

[13] WiredTiger [Online]. Available:
https://github.com/wiredtiger/wiredtiger [Accessed: May 06, 2024].

[14] Н. Kim, H. Y. Yeom, and Y. Son, "An efficient database backup and
recovery scheme using write-ahead logging," in 2020 IEEE 13th
International Conference on Cloud Computing (CLOUD), Oct. 2020,
pp. 405-413.

[15] StorageDB [Online]. Available: https://github.com/alixchan/storagedb
[Accessed: May 06, 2024].

[16] Key-value for metadata storing. Testing embedded databases.
[Online]. Available:
https://habr.com/ru/companies/raidix/articles/345076/ [Accessed:
May 06, 2024].

[17] LMDBJava [Online]. Available:
https://github.com/lmdbjava/benchmarks [Accessed: May 06, 2024].

[18] Benchmarking LevelDB vs. RocksDB vs. HyperLevelDB vs. LMDB
Performance for InfluxDB [Online]. Available:
https://www.influxdata.com/blog/benchmarking-leveldb-vs-rocksdb-
vs-hyperleveldb-vs-lmdb-performance-for-influxdb/ [Accessed: May
06, 2024].

[19] Metadata fot rhe cluser: race of key-value heroes [Online]. Available:
https://highload.ru/2017/abstracts/2974.html [Accessed: May 06,
2024].

[20] Use case example [Online]. Available:
https://github.com/alixchan/storagedb/blob/master/src/main/resources
/usage.md [Accessed: May 06, 2024].

