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Abstract—The article is devoted to development of a 

persistent key-value storage engine which implements a new 

approach to sequential data reading. The main idea of the 

proposed approach is clustering recently updated keys at the 

beginning of their data file so that the operating system would 

cache only this part of the file instead of caching the whole file 

improving the efficiency of sequential data reading. 

Experimental results of the developed storage engine 

implementing the proposed approach proved that it can be 

particularly efficient in case of a limited set of keys with a fixed 

size of values when fast sequential search is required. 
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I. INTRODUCTION 

Today the increasing volume of data and its critical 
importance for a business or organization emphasize the 
need of efficient data storage systems [1]. Data storage 
becomes a fundamental aspect since unsaved facts and 
information are unavailable for analysis and useless to the 
enterprise. The presence of systems capable of processing, 
storing and managing large volumes of data as well as 
extracting valuable knowledge from them, becomes an 
integral factor for making management decisions and 
optimizing business processes [2]. In the context of growing 
demand, fast data retrieval becomes especially important. 
Companies shall make decisions quickly based on up-to-date 
data as delays in accessing information can seriously affect 
the efficiency of the enterprise and its processes. To avoid 
such delays and ensure quick access to data, it is necessary to 
have an optimized data storage system [1]. 

There are many different data storage technologies 
including traditional relational databases, NoSQL databases, 
distributed file systems and cloud data warehouses [3]. 
Traditional relational databases can be a suitable choice for 
structured data and tasks that require ACID compliance, 
offering strong data schema and providing complex 
operations using SQL queries. However, the explosive 
growth of unstructured data in recent years has become one 
of the main reasons why relational databases no longer meet 
the needs of some companies facing with performance and 
scalability limitations [4]. To work with such data NoSQL 
solutions are actively used. They do not have a data schema 
and provide horizontal scaling [5]. Specific key-value 
storages can be used to store data that does not require 
complex processing but needs high access speed. In this case 
using an embedded persistent key-value storage engine that 

runs directly within the application can be especially 
efficient. This can reduce the overhead of communication 
with a remote database server and delays on data access as 
well as improve the performance of the entire system. 

Solutions for fast data processing and disk space 
management, which can serve as analogues of the proposed 
approach, include optimization within file systems (FAT, 
NTFS, ext4, etc.), where specific methods are used to 
increase the speed of disk space processing such as clustering 
similar files, using metadata structures to efficiently retrieve 
data, and using caching mechanisms like LRU to reduce disk 
I/O operations. Also, indexing techniques are used in 
databases to speed up data retrieval by creating index 
structures: B-trees, hash indexes and bitmap indexes 
organize data to minimize the need for random disk 
access (which is similar to clustering frequently used keys). 
Finally, deduplication can be used. However, this work is 
specifically focused on creation of a data storage subsystem. 

The main goal of the work is to improve the efficiency of 
sequential data reading by developing a persistent key-value 
storage engine based on a new approach of clustering 
recently updated keys at the beginning of the data file. The 
developed solution can be used within optimization of 
existing data storage and processing systems or construction 
of new ones to achieve the following expected benefits: 

 improvement of the overall performance since 
sequential reading can be significantly more efficient 
than random access [6,7]; 

 reduction of overhead costs due to the fact that the 
storage engine works directly within the application, 
which reduces the overhead costs of communication 
with a remote database server, reduces delays when 
accessing data and increases system responsiveness; 

 simplified deployment and maintenance because 
there is no need to install and configure a separate 
database server, which reduces infrastructure 
complexity and simplifies data recovery, which is an 
important factor for ensuring data security in 
applications. 

II. OVERVIEW OF EXISTING SOLUTIONS 

Based on the exploring of relevant web-resources such as 
DB-Engine, Database of Databases (DoDB), Thoughtworks 
Technology Radar and Google Trends which provide 
rankings and compare popularity of miscellaneous software 



tools, the following solutions were selected for further 
analysis: LevelDB [8], RocksDB [9], LMDB [10], Oracle 
Berkeley DB [11], BoltDB [12] and WiredTiger [13]. All 
these subsytems for persistent data storage have key-value 
and schema-free data model. This means that data is stored 
as key-value pairs where each key has a corresponding value. 
The absence of a data schema allows storing a variety of data 
types without first defining their structure or schema. This 
approach provides flexibility in storing and processing 
heterogeneous data and simplifies adding, changing or 
deleting data without the need to update the entire schema 
[4]. 

A common feature for all mentioned solutions is 
immediate consistency. It provides a simple data consistency 
model where written data is immediately available for 
reading and therefore has low latency since it does not 
require additional coordination or waiting operations. The 
main advantage is that the implementation of this type of 
consistency in the data storage engine is relatively simpler 
compared to other types which allows the use of simple 
mechanisms for writing and reading data. This consistency is 
useful for applications where data relevance is a priority 
while writing conflicts and concurrency are unlikely or 
unimportant. 

Durability is ensured by Write-Ahead Logging (WAL). 
This mechanism guarantees data integrity, improves 
performance and ensures transaction stability. Data is written 
to the log first and then merged asynchronously with 
persistent storage which reduces write latency and increases 
speed [14]. WAL is also easy to implement and allows 
restoring the state of data in case of a system failure. 

The main feature of the considered solutions is key-value 
data model. Data can be organized into key-value pairs that 
are stored on disk in corresponding data files. An index file, 
on the other hand, is used to quickly find keys in a data file. 
Typically the index file contains a data structure that maps 
the keys to their corresponding offsets in the data file where 
the corresponding values are located. That is, when searching 
for a value by key, the index file is first accessed to find the 
offset in the data file where the corresponding value is 
located. The value is then retrieved from the data file and 
returned to the user. 

Choosing an index data structure to implement a storage 
engine, such as B-tree, Log-Structured Merge (LSM) tree or 
hash table, involves a number of trade-offs that depend on 
the specific use case and database requirements. LSM is well 
suited for write-intensive and read-intensive scenarios. B-tree 
is well suited for scenarios with a steady flow of writes and 
reads, where high performance support for data lookups and 
updates is required. A hash table is well suited for scenarios 
with high key search intensity and relatively low data update 
intensity, in addition, it excludes range queries and may be 
less efficient when working with large volumes of data. 

For storages implemented on a B-tree or LSM sequential 
read performance is lower than for simple reading a file from 
an SSD [6]. This is because B-tree and LSM stores require 
additional operations to find keys and values in the data 
structure such as traversing tree levels or merging sorted 
lists. In addition, LSM requires sorting all the data which can 
take considerable time when adding new records. While 
simply reading a file from an SSD does not require 
additional operations to look up keys and values and can be 

performed sequentially without additional I/O operations. 
This provided higher speed of sequential reading. 

With a large flow of input operations LSM trees may 
encounter the problem of write amplification, which leads to 
increased disk load due to frequent writes and merging of 
fragments. If the data is poorly compressed, LSM trees may 
require more disk space, which will also affect read and write 
operations. Additionally, when reading large amounts of 
data, LSM trees can have performance issues due to the need 
to scan multiple levels of the tree to retrieve data, while 
optimized serial I/O solutions can perform faster reads due to 
linear data access. Also, with a large number of requests to 
update or delete data, LSM trees may encounter a 
fragmentation problem, which will lead to performance 
degradation due to the need to perform additional merge 
operations. None of the storage subsystems can provide the 
same sequential read speed as simply reading a file from an 
SSD. Most storage engines are based on LSM, which 
requires all data to be sorted and does not provide an optimal 
way to cluster recently updated keys together. Although 
some keys are frequently updated and queried, LSM-based 
stores require all of their information to be cached within the 
operating system in a file cache. 

Using simple disk operations instead of multi-level 
caching and restructuring makes sense in a number of 
specific scenarios. For example, a solution based on 
sequential I/O disk operations is easier to implement and 
support, especially in the case of small projects or 
applications with a limited development budget. If the data is 
rarely changed, using multi-level caching and restructuring 
may be overkill. Simple disk operations can be more 
efficient in this case, since they do not require additional 
effort to update caches. 

So the analysis of existing solutions revealed that none of 
them can provide the same sequential reading speed as a 
simple reading a file from an SSD. Most storage engines are 
based on LSM which requires all data to be sorted and does 
not provide an optimal way to cluster recently updated keys 
together. Although some keys are frequently updated and 
queried, LSM-based storages require all of their information 
to be cached within the operating system in a file cache. 

To solve this issue a new approach is proposed which 
consists in clustering recently updated keys at the beginning 
of their data file so that the operating system would cache 
only this part of the file instead of caching the whole file 
improving the efficiency of sequential data reading. 

III. IMPLEMENTATION OF THE PROPOSED APPROACH 

The developed persistent key-value storage engine 
StorageDB [15] implementing the proposed approach is 
based on the following functional features: 

 a fixed key and value size (which allows the use of 
an offset-based indexing strategy); 

 the data is stored in a flat file with synchronization 
markers every few records; 

 when the database is opened, an index is created 
through sequential scanning (the index contains 
information about the key and its last location in the 
file); 



 when new data is written, it is only added to the end 
of the file and the index is updated accordingly; 

 when a database is opened, an index is created 
through a sequential scan. The index contains 
information about the key and its last location in the 
file; 

 for sequential data scanning, a reverse pass through 
the record log (WAL) occurs first and then a direct 
pass through the data file; since the newest data is at 
the end of the WAL, the traversal is performed in 
reverse order which allows sequential access to the 
data without affecting the index (less CPU load); 

 for random access the data is located by offset; 

 when implementing the consolidation strategy, data 
from the old file is overwritten to the new one while 
the newly updated keys are collected at the 
beginning of the new file. 

High-level architecture of the developed storage engine is 
presented in Figure 1. 

StorageDBBuilder is an implementation of the Builder 
pattern for co-building an instance of the StorageDB class. 
StorageDB is a part of the storage engine and provides 
functionality for database management. This structural 
element provides a convenient way to configure and create a 
StorageDB instance with specified configuration parameters, 
allowing flexible storage management. 

StorageDB [15] is an implementation of a key-value store 
database. It provides methods for reading, writing and 
manipulating data in a database. The main purpose of this 
class is to efficiently store and retrieve key-value pairs, as 
well as perform database compression and recovery from 
failures using files to store data, transaction logs and a buffer 
to temporarily store records before writing them to disk. It 
uses IndexMap to track the location of each value in a data 
file or WAL file by mapping keys to data offsets in the files. 
It also uses a buffer to optimize writes and periodically 
flushes the buffer to disk. In addition, it implements a 
background thread for compaction (combining data files to 
reduce the number of small files and improve read 
performance) and allows the use of a thread pool to perform 
background ExecutorService operations. 

 

Fig. 1. High-level architecture of the developed storage engine 

 

 

 

Fig. 2. Use-case diagram with a function call to determine the storage size 

Config and CompactionState are needed to set system 
parameters. Also implemented are utilities for working with 
files, a number of additional exceptions and utilities for data 
recovery and address calculations. 

Buffer is used to write data to a WAL write log file and 
then write it to disk. It is designed to work with a record 
buffer in RAM. The buffer is a logical extension of the WAL 
file, and if the index points to an offset greater than that of 
the actual WAL file, then the data is assumed to be in the 
write buffer. This class performs the following: 

 Represents a buffer that is used to temporarily store 
records before they are written to disk. It serves as 
intermediate storage for data changes that will later 
be written to permanent storage (in a WAL file). 

 Provides methods for performing read and write 
operations on a buffer. It allows adding new records 
with specified keys and values to the buffer, as well 
as updating existing records by key. 

 Manages the allocation and release of memory for 
storing entries in the buffer. It allocates sufficient 
memory to store records based on the specified 
configuration and record sizes. 

 Responsible for inserting synchronization markers 
into the buffer to ensure data integrity when written 
to disk. Synchronization markers help track record 
block boundaries and ensure data integrity when 
read. 

 Provides methods for sequentially accessing entries 
in a buffer. This is convenient for performing 
traversal operations or processing entries in a buffer. 

A use-case example demonstrating a function call to 
determine the storage size is presented in Figure 2. 

First, an instance of the StorageDB object is created 
using the Builder pattern, performing several 



configurations (1.1, 1.2, 1.3 in Fig.2). The build() call creates 
and returns an instance of the StorageDB object with the 
specified configuration parameters. During the execution of 
this construct, an implementation of the default index 
structure (1.4.1.1), WAL (1.4.1.2) and a pool of objects for 
file management (1.4.1.3) is created. Next, the test calls for 
the database size (1.5). At the end, db.close() is called to 
close the database after the test is run. This is important for 
properly freeing resources and preventing memory leaks. As 
part of this process, the flush() method (1.6.1) is called, 
which performs the operation of resetting the write buffer to 
the permanent record log storage (WAL) and performs some 
checks and status updates, in which the flush() of the Buffer 
class is used to write data from the buffer to the output 
stream and clear() is used to clearing the buffer by setting it 
to its original state. 

The required software [15] was implemented with Java 
programming language. Maven was used as a build system, 
SLF4J as a logging framework, Logback-Classic as a logger, 
JUnit for testing, Mockito and Trove4j for optimized and 
efficient collections, JMH for measuring performance, 
JaCoCo for measuring code coverage, Apache Commons 
Pool 2 for resource pool management. 

IV. RESULTS 

To assess the efficiency of the developed storage engine 
its performance was compared with one of the most popular 
existing solutions - RocksDB, which occupies leading 
positions in various ratings. It has been noted by experts and 
data storage specialists as one of the most efficient and 
productive solutions in its category. Quantitative 
measurements carried out in the selected use case showed 
significantly better performance of this solution compared to 
other analogues [16-19]. 

LSM trees commonly used in NoSQL databases are 
designed to efficiently handle keys and values of varying 
sizes, but the approach proposed in the paper targets a 
specific use case where fixed key and value sizes are feasible 
and beneficial for the scenario. While LSM trees are 
excellent at handling dynamic key and value sizes, they may 
not always be the most suitable solution for scenarios where 
predictable performance and optimized disk usage have the 
highest priority. The proposed approach offers an alternative 
solution tailored to specific requirements. Comparison with 
LSM trees was used just to highlight the specific results of 
the proposed method with no intention to position it as a 
direct competitor to LSM-based solutions. 

 

Fig. 3. Performance of the developed storage engine (green) and RocksDB 

(blue) on the measured metrics 

To validate the functionality of the developed solution a 
singleflow test was conducted that included processing of a 
dataset consisting of 100 million 4-byte keys paired with 
corresponding 28-byte values, similar in its structure to the 
use case described in [20]. To obtain the results JMH (Java 
Microbenchmark Harness) was used, which is a popular tool 
for microbenchmarking in Java, as well as the following 
hardware: AMD Ryzen 5 2500U with Radeon Vega Mobile 
Gfx, 8 CPU, 8 GB RAM. The test was aimed primarily at 
verifying the functionality of the developed storage engine 
rather than providing a comprehensive benchmark against 
existing solutions. Tests on replace or removal operations has 
not been executed. 

The results are presented in Figure 3 in the form of a 
histogram that displays the performance of two solutions 
based on the measurements. It’s worth noting that the test 
was not intended to serve as a thorough comparison against 
existing solutions. It was rather designed to demonstrate the 
functionality of the developed storage engine under basic 
conditions. 

V. CONCLUSION 

Described in the paper is the persistent key-value storage 
engine which implements a new approach to sequential data 
reading. The main idea of the proposed approach is 
clustering recently updated keys at the beginning of their 
data file so that the operating system would cache only this 
part of the file instead of caching the whole file improving 
the efficiency of sequential data reading. 

The developed storage engine can be particularly 
efficient in cases with a limited set of keys with a fixed size 
of values when fast sequential search is required. The results 
obtained are important because key-value data is the main 
tool for many similar systems while their internal 
implementation is modestly covered in the literature. 

While demonstrated results indicate promising 
performance gains, further benchmarking against existing 
solutions with similar fixed-length key-value structures 
would provide a more comprehensive understanding of the 
developed solution's comparative performance. Futher it is 
planned to incorporate more robust testing methodologies, 
including diverse datasets and workload scenarios, to assess 
the stability and scalability of the proposed approach. 
Possible improvements to the developed software include 
less common data structures for data storage and indexing to 
speed up data access and reduce system load and more 
complicated testing to detect its bottlenecks. 
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