
Detection of Dead Function Calls as Source Code
Defects through Static Analysis
Vera I. Vasileva∗†, Alexey E. Borodin∗, and Alexander E. Volkov∗

∗ Ivannikov Institute for System Programming of the RAS
† Lomonosov Moscow State University

Moscow, Russia
E-mail: {veravasilieva14, alexey.borodin, volkov}@ispras.ru

Abstract—Detection of dead code (i.e. the code which is
executed, but does not affect an observable program behavior) is
commonly used by compilers as a part of optimization techniques
for redundant code elimination. At the same time dead function
calls might be seen as a kind of program source code defects,
which may point to serious program logic faults. We describe a
new detector for this kind of issues developed as a part of SVACE
static defect detection tool, as well as the specific cases, which
should be filtered out for practical detection of dead functions
calls as program errors in contrast to their formal definition.

Index Terms—static analysis; software defects; dead code;
useless code; side effects; SVACE; C/C++; Go; symbolic execu-
tion; data-flow analysis; live variable analysis; interprocedural
analysis.

I. INTRODUCTION

In imperative programs, functions can be used both in a
functional-like paradigm to calculate a return value, and like
subroutines (procedures) to perform actions that will lead to
some observable effects of a function call, i.e. aiming the use
of their side effects.

If a function has no side effects, but is called in a way that
the result of its calculations is not used, such a call is useless
or has no effect. Since it wastes computational resources, a
useless call itself is a sort of a source code defects, but what
is more crucial, this code issue may indicate a serious fault in
the program logic implementation.

Let’s consider an example in Listing 1 which is based on a
case we observed on an open-source projects (binutils). �

1 int getNextId(int id) {
2 if (id < 0 || id >= 256)
3 return -1;
4 return id + 1;
5 }
6

7 #define TO_NEXT_ID(x) getNextId(x)
8

9 void processId(int id,
10 void (*acceptId)(int)) {

11 TO_NEXT_ID(id); // dead call to getNextId

12 acceptId(id);
13 } 	
Listing 1. Example of a dead call pointing to an erroneous program logic

As one can suppose, macro name TO_NEXT_ID might have
mislead the programmer, so the macro was used in the way
like it would change the value of its argument, but in fact this

code does not change it, despite the possible expectations of
its author.

Dead function call is one of the possible kinds of dead code,
and the detection of it for the purpose of its elimination is one
of the common compiler optimization techniques [1, 2].

In order to avoid any terminological ambiguity, we would
like to point out that use of the term dead code is often not
quite consistent between the area of program static analysis
algorithms (as well as compiler techniques) and source code
defects descriptions. In this paper we use the term dead code
to refer to the code that has no impact on the observable
program behavior (which corresponds to its use for program
static analysis). This meaning of dead code differs from the
one for unreachable code and is a part of more general classes
of useless or redundant code. In contrast, CWE 1 provides the
following description in the related entry ‘CWE-561: Dead
Code’ [3], quote: “Dead code is code that can never be
executed in a running program. The surrounding code makes
it impossible for a section of code to ever be executed.”

In this paper we do not follow the latter definition and treat
the issue described in CWE-561 as unreachable code.

The key point of our work is to consider dead function
calls as a potential defects in the source code and we describe
implementation of a detector to search such defect issues using
static analysis methods.

Our experience with a detector implementation for finding
such cases demonstrates that not all the dead calls should be
considered valuable as source code defects: very often the calls
which are dead in formal sense and could be eliminated by the
compiler during optimization, might appear due to idiomatic
usage of certain programming language constructs (such as
C++ templates) or specific architectural decisions (different
function body implementations depending on compilation set-
tings). Moreover, software developers might rely on the fact
that these constructions will be optimized by the compiler,
so an analysis that would provide warnigns relevant to the
programmer’s perspective needs to be more specific in contrast
to dead calls detection in general.

Thus the essential feature of a detector for dead calls
reported as errors is its ability to filter out the calls, which
are dead formally, but have a questionable interest for the

1CWETM — Common Weakness Enumeration

1

programmer (we refer to these issues as the issues, which are
true formally only).

For dead function calls detection we will need an auxiliary
analysis to determine if a function has no side effects.

For this purpose we will use an interprocedural analysis
based on summaries, in which the determination of side effects
occurs flow-insensitively. We will check that the return value
of a function is not used using liveness analysis.

A detector for finding such erroneous issues we imple-
mented as a new analyzer within the framework of SVACE [4,
5] static analysis tool. Our detector supports analysis of the
programs written in C/C++ and Go.

II. ANALYSIS INPUT LANGUAGE (INTERNAL
REPRESENTATION)

The low-level language we use as an internal representation
for the input programs is the one of SSA-form2. Its instruction
kinds cover different needs, such are, for instance, some
programming languages built-in intrinsics. For clarity purposes
we list below only the instructions kinds, which are relevant
to our paper:

• r := alloca() — allocate memory on program’s call
stack, write the pointer to the allocated memory to r;

• r := load p — read a value from the memory pointed
by p, store this value to r;

• store v, p — write the value v to the memory pointed
by p;

• r := v1 op v2 — apply operation op to arguments v1
and v2, write its result to r, where op is one of the
following: +, -, *, /, ==, !=, >, <, >=, <=;

• r := call func(v1, ..., vn) — call function
func and pass the values of the arguments v1...vn, where
func is either a functon name, or a variable (pointer-to-
function).

• goto L – unconditional jump to label L;
• if (v1 op v2) { codetrue } else { codefalse
} — if bool_expr yields true, then execute codetrue, else
execute codefalse, where op is one of the operations:
==, !=, >, <, >=, <=, and codetrue and codefalse are
instruction lists;

• return v — terminate the current function execution
and return the value of v to the caller’s context.

Listing 2 demonstrates the representation of the program
from the example in Listing 1. �

1 def getNextId(id) {
2 t1 := alloca()
3 store id, t1
4 t2 := load t1
5 if (0 > t2) {
6 return -1
7 } else {
8 if (256 <= t2) {
9 return -1

10 } else {
11 t3 := t2 + 1

2SSA — Static Single-Assignment Form: a program representation where
each variable is assigned exactly once [6]

12 return t3
13 }
14 }
15 }
16

17 def processId(id, acceptId) {
18 t1 := alloca()
19 t2 := alloca()
20 store id, t1
21 store acceptId, t2
22 t3 := load t1
23 t4 := load t2
24 call getNextId(t3)
25 call t4(t3);
26 return
27 } 	

Listing 2. Example of program representation used for analysis

III. ANALYSIS FOR DEAD CALL ISSUES

A. Analysis Algorithm Overview

If a function execution modifies its local environment only
(i.e. has no side effects), the only impact it may produce on
the program execution is its return value, if it has one.

A dead function call (potentially useless from the perspec-
tive of a detector user) is a function call that has no side effects
and whose result is not used further.

We will use a summary-based approach for interprocedural
analysis implementation. It analyzes the functions behavior in
the order of a call graph (CG) traversal and starts from its
leaf nodes, i.e. the functions that do not call other functions.
As a result of each function analysis, it creates its summary,
which reflects relevant properties of the function’s behavior.
These summaries are used subsequently while processing calls
to the analyzed functions.

During the CG traversal the engine runs side-effect analysis,
live variable analysis, and then the dead call issues detector for
each processed function. The latter uses the results of the first
two listed analyses to indentify and report redundant calls.

B. Function Side-Effects vs Function Call Side-Effects

If a function has side effects, a particular call to it may have
or (in contrast) may have no side effects as well. The latter can
occur as a result of the conditions combination in the callee
and the caller function context. We illustrate it in the Listing
3. �

1 enum { NONE=0, ERROR=1, WARNING=2, INFO=3 };
2

3 #define LOG_LEVEL WARNING
4

5 void xlog(int verbosity, int eventCode) {
6 if (verbosity <= LOG_LEVEL) {
7 printf("LOG: %d\n", eventCode);
8 }
9 }

10

11 void demo() {

12 xlog(ERROR, 123); // live call

13 xlog(INFO, 456); // dead call
14 } 	

Listing 3. Calls with and without sife-effects to the same function

2

A call to xlog function may have (line 12) or may have
no (line 13) side effects. This fact depends on the value
passed as verbosity argument and the actual definition of
LOG_LEVEL macro (which is defined in this example explic-
itly, but may come from the compiler options in projects). In
addition this example demonstrates a case, where a true dead
call issue might not be treated like a valuable defect issue. That
is why in the current implementation we build our analysis to
consider just the called function side effects for any call to it
in a context-insensitive way.

C. Dead Call Analysis

The following cases may occur while analysing a call to a
function without side effects:

• The function does not have a return value. In this case
the call is dead.

• The function has a return value, but it is not assigned to
any variable. In this case the call is dead.

• The return value is assigned to an SSA variable. In this
case use of live variable analysis results allows to check,
if variable is used anywhere, and if not, the call is dead.

The implemented detector identifies dead call as above,
which are subject to report after additional checks to filter
out issues that are irrelevant from the perspective of source
code defects.

D. Side Effect Analysis

To determine if a function has no side effects we use a
flow-insensitive analysis. A function does not have side effects,
if all its instructions do not have side effects. The following
instructions may have side effects:

• Function call (non-virtual). To determine if a function
has side effects, the analysis uses the called function
summary. If the summary does not specify the absence of
side effects, the call is considered a one with side effects.

• Function call-by-pointer and virtual function calls.
SVACE resolves these calls where it is possible to do [7].
In such cases, SVACE changes call instruction to the one
with the resolved callee, thus the algorithm designed for
direct function calls will be used then. In other cases,
analysis conservatively considers these calls as the ones
with side effects.

• Use of store instruction to write to memory. The
instruction has a side effect, if the write occurs not to the
function’s local memory, i.e., memory that is not allocated
by the alloca instruction. SVACE tracks variable aliases
[8], this information is used to determine that variable
is local. For cases, where it is not clear, variables are
considered as non-locals.

IV. IMPLEMENTATION

We implemented the algorithms described in the previous
sections as a part of SVACE static analysis tool. SVACE
supports summary-based analysis and provides a data-flow
analysis engine [9], which is used to implements live variable

analysis. SVACE uses SVACE IR — an internal representa-
tion (IR) which is the same for all the supported input source
code languages, the key features of SVACE IR were described
in Section II.

An important analysis feature is trace building, especially
in the case of interprocedural analysis, otherwise the defects
reported as its result might be unclear to users, and treated as
false reports. In the case of the implemented detector it might
be not obvious, why a function does not have side effects, if
it calls other functions.

The listings 4 and 5 illustrate this and demonstrate a dead
call issue reported by the implemented detector on BINUTILS
(v2.22) project. �

1 static void
2 create_obj_attrs_section (void)
3 {
4 ...

5 frag_now_fix (); // dead call
6 ...
7 } 	

Listing 4. Dead call at as.c from binutils �
1 #define obstack_next_free(h) ((h)->next_free)
2

3 addressT
4 frag_now_fix_octets (void)
5 {
6 if (now_seg == absolute_section)
7 return abs_section_offset;
8 return ((char *) obstack_next_free (&

frchain_now->frch_obstack)
9 - frag_now->fr_literal);

10 }
11

12 addressT
13 frag_now_fix (void)
14 {
15 return frag_now_fix_octets () /

OCTETS_PER_BYTE;
16 } 	

Listing 5. Interprocedural side effects absence at frags.c from binutils

The implemented detector generates a warning as shown in
Listing 6, which refers not only to the reported dead call itself
at line 5, but contains information about the called functions. �

NO_EFFECT.CALL:
Call to function: ’frag_now_fix’ has no effect

at as.c:5.
Function ’frag_now_fix’ has no side effects

at frags.c:16
Call to ’frag_now_fix_octets’ at frags.c:15
Function ’frag_now_fix_octets’ has no side

effects at frags.c:10 	
Listing 6. An example of warning report

Examining the initial detector’s results on open-source
projects showed us that a big amount of the detected dead
function calls are just the calls to functions with empty and
trivial bodies—i.e. the functions which has no instructions in
the body at all or only a single return instruction that returns
a constant or value of one of the formal arguments. Very often

3

these functions looks like an intended stubs, their execution
obviously consumes almost no computational resources and,
above all, the programmers most likely expect that these calls
will be eliminated by the compiler optimizations. In the case of
C/C++ these functions quite often are the result of conditional
preprocessing (see Section IV-B). Thus, reporting these cases
as program defects is of a questionable practical interest.

Consequently, we developed additional checks in the de-
tector to filter out the cases mentioned above in order not to
report them. We devote two subsections below to the specifics
of the languages supported in the current implementation
of the detector. The specific we described demonstrates that
though the basic detection algorithms are the same, but some
language-specific constructions and widely used idioms of
their use, require some additional support, that is why the
current implementations does not yet cover all the languages
supported by SVACE.

A. Go-specific Support

Go language has channel data type as a built-in language
feature. It simplifies implementations related to goroutines 3

communications.
Go provides read (<-) and write (->) operations for

channels and select statement, which allows a goroutine
to wait for multiple channel read/write operations. For Go-
specific support we extend the Exemplary Language described
in Section II with the corresponding instructions go_send,
go_receive, and chan_select.

Consider the representation of these instructions in a exem-
plary language in listings 7 and 8. �

1 func receive(c chan int) int {
2 return <-c
3 }
4

5 func send(c chan int, value int) {
6 c <- value
7 }
8

9 func answer(in, out chan int) int {
10 select {
11 case t := <-in:
12 return t
13 case <-out:
14 return 0
15 default:
16 return -1
17 }
18 } 	

Listing 7. Example of channels use in Go �
1 def receive(c) {
2 t1 := go_receive(c)
3 return t1
4 }
5

6 def send(c, value) {
7 go_send(c, value)
8 return;
9 }

10

3Goroutine — a lightweight execution thread

11 def answer(in, out) {
12 t0 := chan_select(in, out)
13 t1 := extract(t0, 0)
14 if (0 != t1) {
15 if (1 == t1) {
16 t2 := extract(t0, 2)
17 return 0
18 } else {
19 return -1
20 }
21 } else {
22 t3 := extract(t0, 1)
23 return t3
24 }
25 } 	

Listing 8. IR for the example of Go program with channels use

Any interaction with channels is obviously produces a side
effect, so our detector considers the related instructions of
the internal representation (go_send, go_receive, and
chan_select) as the ones with side effects.

Also Go allows to define anonymous functions inside an-
other functions and allows the inner function to refer to local
variables of its enclosing function, which forms a (closure).
The captured variables used in these inner functons are con-
sidered as non-local.

B. C/C++-specific Support

C/C++ macros and certain idioms macros use introduce their
own specifics to dead call issues detection.

SVACE analyzes the IR built after the source code pre-
processing, therefore only a part of the actual source code
might analyzed because of conditional compilation. So the
calls detected as dead since the called function has no side
effects might be not dead under other compilation conditions,
when the same function produces side-effects. Reporting these
dead calls as defect issues is undesirable. A partial solution
for this problem is filtering out dummy functions with empty
bodies, as we mentioned earlier in this paper. �

1 PRStatus
2 nssArena_Shutdown(void)
3 {
4 PRStatus rv = PR_SUCCESS;
5 #ifdef DEBUG
6 rv = nssPointerTracker_finalize(&

arena_pointer_tracker);
7 #endif
8 return rv;
9 }

10

11 . . .
12 SECStatus
13 nss_Shutdown(void)
14 {
15 . . .
16 nssArena_Shutdown();

// questionable dead call defect

17 . . .
18 } 	

Listing 9. Questionable dead call defect because of conditional compilation
in nss project

In addition, the C++ language has templates that can be
instantiated with different data types. It may happen that not all

4

of the instantiations, but only a part of them result to a formally
dead call. The analysis over IR produced per each instantiation
detects only that a call resulted from a particular template
function instantiation is dead. However, when a call in a
particular template function instantiation to another template
function is dead, some other instantiation may result for the
same call invocation of another instantiation of the called
function, which in turn has side effects. So a dead call in
a particular instantiation does not mean a true defect issue in
terms of source code in this case. Therefore, warnings about
unnecessary function calls are not generated by the detector
inside templates.

We illustrate the case like described above in Listing 10. �
1 class A {
2 static int field;
3 public:
4 int foo() {
5 return ++field;
6 }
7 };
8

9 class B {
10 static int field;
11 public:
12 int foo() {
13 return field + 1;
14 }
15 };
16

17 template <typename T>
18 void bar(T t) {
19 t.foo();

// dead call for T=B instantiation only

20 }
21

22 void demo() {
23 A a;
24 B b;

25 bar(a); // live call

26 bar(b); // dead call
27 } 	

Listing 10. Dead calls to a template function

Method foo() of class A has side effects, since it changes
variable A::field, in contrast to method foo() of class B.
SVACE traverses both template function bar instantiations:
bar<A> instantiated for T=A and bar for T=B. The
call t.foo() is dead inside the bar<A> instantiation, but
not inside bar instantiation. So a warning for the call
t.foo() at line 19 though true for T=B, but false for T=A,
thus false in general as a defect report.

V. SIMILAR WORKS

Most of the static analysis tools (as well as SVACE) provide
detectors for a similar from the user perspective, but different
problem: unused (or ignored) return values for a specified
set of functions. The list of the functions to consider in
the detector is either pre-defined or a tool may provide a
mechanism to specify them: configuration files to describe
functions behavior or source code annotations (through syntax-
supported atrributes, comments, etc.)

For example, KLOCWORK (proprietary) checks
(SV.RVT.RETVAL_NOTTESTED issue kind [10]) for
ignored return value of socket, recv and a subset of
pthread-family functions.

Another tool SONARSOURCE [11] (open source) has, for
example, rule RSPEC-5308 for C: “Return value of "se-
tuid" family of functions should always be checked’ and
rule RSPEC-5277 for C++: “Return value of "nodiscard"
functions should not be ignored”.

An open-source SPLINT[12] covers C/C++ cases, docu-
mented as: “8.4.1 Statements with No Effects” and “8.4.2
Ignored Return Values” (in “8.4 Suspicious Statements”).
Their approach is based on source code attributes — ‘pure‘
attribute in particular.

Note, that a tool may cover this kind of issues not for all the
supported languages. For example, SONARSOURCE (already
mentioned above) has a rule very close to the logic of the
detector we implemented: RSPEC-2201: “Methods without
side effects should not have their return values ignored”, but
for C# only.

All this makes any noteworthy tools comparison quite
complicated.

The closest analog for the detector described in this paper is
most likely the one implemented in COVERITYSCAN. Though
it is a proprietary static analysis tool and Coverity does not
provide a free access even to the list of the defect kinds, which
their tool is able to detect, one of the success stories they
published online[13] gives an evidence of a USELESS_CALL
issue detected by COVERITYSCAN on ScummVM project (file
tattoo_journal.cpp), we quote a tiny part of it in
Listing 11. �

<<< CID 1308097: Incorrect expression
USELESS_CALL

<<< Calling "screen->empty()" is only useful for
its return value, which is ignored.

screen.empty(); 	
Listing 11. USELESS_CALL reported by COVERITY

Commit 95884c3 in project ScummVM [14] with the
message “SHERLOCK RT: Actually clear screen instead of
a useless call. CID 1308097”, which fixes this problem, is
shown in Listing 12. �

engines/sherlock/tattoo/tattoo_journal.cpp
. . .
@@ -66,7 +66,7 @@ void TattooJournal::show() {

// Set screen to black, and set
background

screen._backBuffer1.SHblitFrom((*
_journalImages)[0], Common::Point(0,
0));

- screen.empty();
+ screen.clear();

screen.setPalette(palette);

if (_journal.empty()) { 	
Listing 12. Fix of USELESS_CALL in ScummVM project

5

It is one more example from the open source projects, which
demonstrates that a dead code issue may indicate more serious
logic faults of the analyzed program.

VI. RESULTS AND DISCUSSION

We tested the detector we have developed on the source code
of open-source projects. Our measurements showed that the
contribution of the new detector almost does not affect the total
SVACE analysis time (it is just comparable to measurements
precision).

A. Results on Go Projects

For the testing on Go projects we used a collection of rela-
tively small- to medium-size projects. The detector reported 14
issues, 71% are true issues and are potential candidates to fix,
while the rest is most likely of low interest for a programmer
though still indicate true dead calls.

The detailed results for Go projects displayed in Table I. The
size listed in the table includes the lines of code of analyzed
dependencies (dependency libraries/projects) and for technical
reasons is calculated by SVACE as a total size only.

project
true

formally
only

true fix
candidates false size

(KLOC)

oakmound/oak 1 0 0

tikv/tikv 0 2 0

pingcap/tidb 1 0 0

xgb 0 8 0

jaeger-client-go 1 0 0

go-redis 1 0 0

Total: 4 10 0 >3929

Table I
REPORTS ON GO PROJECTS

B. Results on C/C++ Projects

An example of an actual dead call defect found by the
detector in xproto project is shown in Listing 13. The call
to Pad() method at line 19 is dead. �

1 func Pad(n int) int {
2 return (n + 3) & ^3
3 }
4

5 func changeGCRequest(c *xgb.Conn, Gc Gcontext,
ValueMask uint32,

6 ValueList []uint32) []byte
{

7 size := xgb.Pad((8 + (4 + xgb.Pad((4
8 * xgb.PopCount(int(

ValueMask)))))))
9 b := 0

10 buf := make([]byte, size)
11 ...

12 b = xgb.Pad(b) // detected dead call
13 return buf
14 }

	
Listing 13. Dead call detected in xproto project

The detector emitted 125 warnings on the analyzed C/C++
projects. 13 of them are true, 6 are false positives. Others
though true in formal sense, but are of questionable interest
for the users.

The warning that are true formally only, relate to calls
to functions, which definitions use macros and depend on
conditional compilation.

False issue reports are the result of the current internal
representation specifics for some built-in functions that lacks
some details for them. These detailes are of no importance for
other analysises, but are crusial in this case for ours. Thus, 6
false reports are caused by live variable analysis which does
not get information to determine that the variables passed
to __builtin_alloca are live. We plan to extend the
representation used in SVACE in order to fix it.

The detailed results for C/C++ projects are shown in Table
II contains details of results for C/C++ project analysis.

project
true

formally
only

true fix
candidates false size

(KLOC)

binutils 8 2 0 1078.6

gnupg 3 0 0 157.5

gst-plugins-good 32 0 0 566.2

openssl 0 1 0 366.7

xorg-server 2 1 0 602.4

libxml 60 0 0 303.4

nss 2 0 0 617.6

gtk+ 0 1 0 915.9

gcc 18 8 6 5390.2

Total: 125 13 6 9999.5

Table II
REPORTS ON C/C++ PROJECTS

An example of an actual dead call defect found by the
detector in binutils (v2.22) project is shown in Listing
14. The call to _bfd_mips_elf_sign_extend() at line
19 is dead. �

1 bfd_vma
2 _bfd_mips_elf_sign_extend (bfd_vma value, int

bits)
3 {
4 if (value & ((bfd_vma) 1 << (bits - 1)))
5 /* VALUE is negative. */
6 value |= ((bfd_vma) - 1) << bits;
7 return value;
8 }
9

10 bfd_reloc_status_type
11 _bfd_mips_elf_gprel16_with_gp (bfd *abfd,

asymbol *symbol,
12 arelent *reloc_entry, asection *

input_section,

6

13 bfd_boolean relocatable, void *data, bfd_vma
gp)

14 {
15 bfd_vma relocation;
16 bfd_signed_vma val;
17

18 val = reloc_entry->addend;
19 _bfd_mips_elf_sign_extend (val, 16);

// detected dead call
20

21 . . .
22

23 return bfd_reloc_ok;
24 } 	

Listing 14. Dead call detected in binutils project

One more example was listed in Listing 4 in Section IV.

VII. CONCLUSION AND FUTURE WORK

As the result of our work we developed a new detector
which is a part of SVACE static analysis tool. The detector is
able to find dead code issues relevant as potential source code
defects. The introduced analysis has no observable impact on
the overall SVACE analysis time.

We studied the results of the initial implementation versions
of our detector and discovered the cases which are true in the
sense of dead call definition, but are of questionable interest for
software developers. Subsequently, as a significant part of the
current version of the detector we implemented the algorithms
to exclude the most rubbish cases from the detector output. An
important part of these cases is language-specific and covers
now C/C++ and Go languages. The rest of the discovered dead
call cases, which are detected by the current implementation
of the detector, but are of a low interest as code defect issues
are the subject for the related future work and the detector
improvements. In addition to that we plan to adjust the detector
for other languages supported by SVACE, since their particular
features and use of certain language idioms require specific
support as our preliminary experiments have showed us.

References
[1]. Alfred V. Aho et al. “Compilers. Principles, techniques,

and tools.” English. In: 2nd ed. Boston, MA: Pearson-
/Addison Wesley, 2007. Chap. 8.5.3.

[2]. [gcc.git] / gcc / tree-call-cdce.cc: Conditional Dead
Call Elimination pass for the GNU compiler. Accessed:
2024-02-19. URL: https://gcc.gnu.org/git/?p=gcc.git;f=
gcc/tree-call-cdce.cc;hb=refs/heads/master.

[3]. Common Weakness Enumeration (CWETM) — CWE-
561: Dead Code. https://cwe.mitre.org/data/definitions/
561.html. Accessed: 2024-02-19.

[4]. A. Belevantsev et al. “Design and Development of
Svace Static Analyzers”. In: In 2018 Ivannikov Memo-
rial Workshop (IVMEM) (2018), pp. 3–9.

[5]. A.E. Borodin and A.A. Belevancev. “A static analysis
tool Svace as a collection of analyzers with various
complexity levels”. In: Proceedings of the Institute for
System Programming of the RAS 27.6 (2015), pp. 111–
134.

[6]. Ron Cytron et al. “An efficient method of computing
static single assignment form”. In: Proceedings of the
16th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. 1989, pp. 25–35.

[7]. Artemiy Galustov, Alexey Borodin, and Andrey Bele-
vantsev. “Devirtualization for static analysis with low
level intermediate representation”. In: 2022 Ivannikov
Ispras Open Conference (ISPRAS). 2022, pp. 18–23.
DOI: 10.1109/ISPRAS57371.2022.10076859.

[8]. A.E. Borodin and I.A. Dudina. “Intraprocedural Anal-
ysis Based on Symbolic Execution for Bug Detection”.
In: Programming and Computer Software 47.8 (2021),
pp. 858–865.

[9]. R.R. Mulyukov and A.E. Borodin. “Using unreachable
code analysis in static analysis tool for finding defects
in source code”. In: Proceedings of the Institute for
System Programming of the RAS 28.5 (2016).

[10]. Klocwork Documentation — C and C++ checker refer-
ence — SV.RVT.RETVAL_NOTTESTED: Ignored return
value. https : / / help . klocwork . com / current / en - us /
reference/sv.rvt.retval_nottested.htm. Accessed: 2024-
02-19.

[11]. SonarSource: Static Analysis Rules. https : / / rules .
sonarsource.com. Accessed: 2024-02-19.

[12]. Splint Manual. 8.4 Suspicious Statements. 8.4.1 State-
ments with No Effects. 8.4.2 Ignored Return Values.
Accessed: 2024-02-19. URL: https://splint.org/manual/
manual.html#control.

[13]. Coverity Scan — Success Stories: Sample of Defects
found and fixed — ScummVM: USELESS_CALL. https:
/ / scan . coverity . com / o / oss _ success _ stories / 86.
Accessed: 2024-02-19.

[14]. GitHub: ScummVM repository — commit 95884c3.
https : / / github . com / scummvm / scummvm / commit /
95884c396b667e048af933292f40fc18da2cefd1.
Accessed: 2024-02-19.

7

