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Abstract—Modern Integrated Modular Avionics (IMA) systems
require a Real-Time Operating System (RTOS) for robust re-
source partitioning. In the same manner, IMA systems require
a deterministic network to guarantee timely communication
between modules of an onboard system. However, unlike RTOS,
the interface and behaviour of which is well-documented in the
ARINC 653 standard, determinstic network architecture is much
less standardized and depends on the RTOS implementation
and the underlying protocol stack. In this paper we present the
network stack architecture for deterministic SpaceWire network
implemented in ARINC 653 RTOS. The design decisions pre-
sented in the paper were implemented and verified on different
types of space equipment.

Index Terms—IMA, deterministic networking, real-time oper-
ating systems, ARINC 653, SpaceWire

I. INTRODUCTION

Modern approach to development of airbourne hard real-
time systems — called Integared Modular Avionics (IMA) —
is to execute application software in an environment of Real-
Time Operating System (RTOS) that ensures robust partition-
ing of CPU time, memory and devices. IMA allows to simplify
system verification by reducing it to seperate verification of
isolated applications and static analysis of compatibility of
application requirements.

According to IMA control modules, sensors and actuators
are composed into a single deterministic network. Similarly,
network interaction composability is required: seperate verifi-
cation of network interaction of two hosts and static analysis of
compatibility of different network interactions must be enough
to guarantee robust operation of system as a whole.

ARINC 653 [1] standardizes the interface given to system
integrator and application developer, however network stack
architecture is not standardized and is thus invented by the
RTOS developer.

Network stack architecture may be dictated by the transport
layer protocol, as it is done ARINC 664P7 (AFDX) [2].
As for SpaceWire protocol [3] used in space missions, there
are several competing architectures of deterministic networks,
however not all of them are compatible with ARINC 653.

In this paper we list and specify higher-level requirements
to the deterministic SpaceWire network stack implemented in
ARINC 653 RTOS (section II) and describe the algorithm of

developing a driver under ARINC 653 (section III). Proposed
network stack architecture (section IV) has numerous benefits:

∙ Unified architecture allows to simplify the process of
porting SpaceWire drivers to new platforms.

∙ Network scheduling allows to meet the requirements of
deterministic packet delivery.

∙ Coordinated packet buffering in network stack allows to
eliminate packets being dropped on transmission and to
decrease transmission latency.

∙ Driver Finite State Machine allows to handle incoming
and outgoing DMA transfers with bounded processing
time.

Proposed network stack architecture is implemented in
CLOS, an RTOS developed at ISP RAS, and tested on
hardware platforms used in space industry (section V).

II. REQUIREMENT ANALYSIS

For Spacewire network stack architecture there are generally
four sources of requriements:

1) Abstract model of deterministic network.
2) ARINC 653 standard for RTOS interface.
3) Deterministic SpaceWire protocols.
4) Considerations of user-friendliness to system integra-

tor.

A. DetNet requirements

A thorough analysis of requirements for deterministic net-
work and the resulting architecture can be found in RFC 8655
[4]. Quality of Sevice (QoS) is defined in terms of parameters:

∙ Minimum and maximum end-to-end latency from source
to destination.

∙ Packet delay variation (jitter).
∙ Packet loss ratio.
To optimize these parameters a set of techniques is pro-

posed:
1) Explicit static route allocation. Dynamic routing is

inapplicable to deterministic networks as it adds routing
convergence time to the worst case of packet delivery
latency.

2) Static allocation of buffer space and bandwidth along
the flow. A simplest way to introduce packet loss or



additional packet delay is a configuration of two data
flows colliding in a switch. The approach of dynamic
congestion control used in TCP is inaplicable to deter-
ministic networks as it is based on packet loss in the first
place.

Figure 1: Introduction of packet loss or packet delay during
switching

3) Fixed time of packed delivery. Static periodic schedul-
ing of application software allows to seperate time of
packet reception from the network and time of it’s deliv-
ery to user application, decreasing network jitter to RTOS
scheduler jitter.

B. ARINC 653 requirements

According to ARINC 653 applications are executed in
partitions. Each partition has isolated address space, it’s own
set of OS objects (file descriptors, synchronization primitives,
etc.), a set of executed processes and their respective time
windows in the periodic schedule.

In order to minimize the amound of RTOS code excuted
with elevated privilege, network stacks (and file systems,
and device drivers) are placed in dedicated system partitions.
System partitions resemble user partitions, however they are
allowed to use non-standard extensions to OS kernel interface.

Figure 2: Network communication model of ARINC 653

The model of inter-module communication [5] is as follows:

1) User partition puts outgoing packet to ARINC Queuing
port or ARINC Sampling port.

2) System partition during it’s time window gets the packet
and sends it to the NIC and further to the network.
Received packets are handled as well: every packet is
dispatched by it’s destination address and is stored into
corresponding queuing/sampling port.

3) In their next time window user partitions process packets
received from the network.

C. Deterministic SpaceWire

It is possible to distinguish two dominating approaches to
organization of deterministic SpaceWire network.

Approach of static bandwidth allocation is achieved by
adaptation of AFDX over SpaceWire networks [6]. AFDX
standard builts upon IEEE 802.3 (Ethernet) [7] and views
network as a set of unidirectional unicast routes called Virtual
Links (VLs). Each Virtual Link is assigned a value of it’s
maximum used bandwidth (measured in bit/s). Sum of all
VL’s bandwidths for each physical link must not exceed it’s
capacity. End nodes and switches must guarantee that for
each link the flow does not exceed VL’s bandwidth value
and that there is enough resources to process worst case
requested bandwidth. In theory, this approach achieves robust
partitioning of network interactions.

Approach of time-division multiplexing (TDM) is
achieved by SpaceWire-D [8] and STP-ISS-14 [9] protocols.
With TDM, time is divided into time slots of specified size.
Several slots are assigned to each destination address — each
sender transmits packets only in allocated slots. End node is
notified of next time slot by means of SpaceWire time markers
— their delivery is prioritized over data traffic on Data Link
Layer and is rapid.

Second approach is better covered in research on determin-
istic SpaceWire, and an approximation of worst case time of
end-to-end packet delivery may be found [10].

D. User-friendliness of system integration

In order to ease the burden of system integration a simple
and intuitive model for deterministic SpaceWire network is
required. A desired property of the model — minimal number
of preconditions for correct functioning of the network.

For instance, to simplify system integration we:

∙ Use SpaceWire logical addressing instead of path ad-
dressing.

∙ Abandon broadcast and multicast messaging in favour of
unicast messaging.

∙ Unify network stack architecture and configuration for all
hardware platforms.

∙ Keep port enumeration used in the configuration consis-
tent with that used on transceiver exterior.

III. DEVELOPING DRIVERS FOR ARINC 653 RTOS

RTOS developers take into account that OS will be repeat-
edly ported to various hardware platforms by different people.
As a result, the development of driver code and configuration
is simplified and algorithmized.

A. Component-based Model

A component-based model [11] algorithmizes development
of system partition drivers. System partition is viewed as
composition of seperate components, each of which serves it’s
special purpose (examples of components: NIC card driver,
user partition connector).



In component-based model development of a new com-
ponent (yet another NIC driver for already existing network
stack) is done as follows:

1) Driver developer writes a component configuration file
and declares: input and output component ports, con-
figuration fields availible to system integrator and their
respective types.

2) Code generator transforms component configuration file
into a number of C files with declarations of functions
that driver developer needs to implement.

3) Driver developer implements required functions: compo-
nent initialization and it’s main activity.

4) Driver developer writes a Python script to preprocess
component configuration before inserting it into the
loaded OS image.

Once all components are ready, the project builds as follows:

1) Component composition is turned into a C file with a
sequence of function calls: component initialization and
connection of links. Each function was previously defined
by driver developer.

2) ARINC 653 process is created for each requested se-
quence of component activity functions.

In ARINC 653 network stack component activity has a
special role. ARINC 653 limits use of device interrupts as they
may break partition isolation: first partition’s interrupt may be
handled during the second partition execution and intoduce
unwanted delay. Component activity can substitute interrupt
handling by busy-polling the NIC hardware registers.

B. Driver configuration

In the development and integration of IMA system [12]
there are four general participants:

∙ Hardware platform supplier provides RTOS supplier
with hardware suitable for implementation of basic RTOS
functionality (isolation of memory, CPU time, platform
devices) and capable of meeting IMA system require-
ments.

∙ RTOS supplier implements a robustly partitioned exe-
cution environment.

∙ Application (user partition) supplier develops appli-
cation software and mission-specific devices and corre-
sponding drivers.

∙ System integrator develops RTOS and application soft-
ware configuration, mathes requirements of integrated
system parts.

Drivers may be developed either by RTOS supplier, or by
application suppiler. To simplify system integration configura-
tion parameters are divided by their owner to driver developer
parameters and system integrator parameters. Driver developer
parameters have a complex or unobvious effect on driver
operation or have an unclear domain, and should be either
fixed in driver code or precomputed from other parameters
at build time. System integrator parameters, on the contrary,
have a clear and traceable effect on driver operation and simple

− name: spw0_driver
type: SPACEWIRE_DEVICE_DRIVER
c o n f i g u r a t i o n :

max_packet_s ize: 16
t x _ q u e u e _ s i z e : 16
rx_queue_s i ze : 16
tx_speed: 100
l o g _ l e v e l : important

d e v i c e :
device_name: spw0

Figure 3: Component configuration (system integrator view)

domain that is verified by the build system at build time, and
thus must be easily changed by system integrator.

The algorithm of component configuration in component-
based model is as follows:

1) System integrator writes a component composition file
of a system partition, in which he lists all required
components and their configuration. For each component
there is a unique name, a component type, a list of
requested devices,

2) Build system verifies configuration types and permissions
of access to requested devices.

3) Component build script handles the configuration and
forms a configuration tree that is inserted into RTOS boot
image.

4) In RTOS runtime driver initialization code parses a con-
figuration tree and configures hardware.

C. Hardware access in RTOS environment

According to ARINC 653 concept of robust partitioning,
access to device hardware must be controlled by the OS. As
most of the devices are availible as memory-mapped registers
(MMIO), the approach of robust resource partitioning [13] is
mostly sufficient to restrict access to devices.

Thus, the algorithm of controlled access to hardware is as
follows:

1) In the component composition system integrator lists all
devices, requiested by his system partition.

2) Each device requests the mapping of physical memory
block with it’s registers to partition address space.

3) At build time all of the memory mapping requests are
analyzed for compatibility and the MMU configuration
is constructed.

4) At runtime CPU accesses controller registers by their
virtual addresses.

IV. DETERMINISTIC SPACEWIRE NETWORK STACK

A. Unified network stack architecture

The main problem in network stack unification is the
variety of supported architecture. Two supported SpaceWire



controllers (based on MIPS32 R4000 and PowerPC 476FP)
have two major distinctions.

Firstly, on one platform data exchange is performed with the
NIC directly, while on the other — only through the hardware
switch. For unification purposes we provided a software switch
component with interface and operation equivalent to the
harware switch. Thus, DMA transfers are managed either in
the hardware switch component or in the NIC driver.

Figure 4: Unified SpaceWire network stack

Secondly, one controller sends time markers periodically
with specified period, while the other transfers markers on
write to a register. On-demand mechanism turned out to be
more convinient to organize a network scheduler, and we had
to emulate it with the periodic mechanizm.

Unified SpaceWire network stack consists of four layers:

∙ Network drivers handle monitor state, manage packet
queues and perform DMA list transfers to/from
SpaceWire controller.

∙ Switch redirects incoming and outgoing packets to a
specified outgoing port based on destination logical ad-
dress.

∙ Network scheduler broadcasts time matkers over the
network and enforces network schedule (according to

STP-ISS-14 [9]), passes packets allowed for transmission
in current schedule slot.

∙ ARINC 653 port handlers perform system calls and
exhange packets with buffers in the RTOS kernel.

B. Network scheduler

In the presented architecture network scheduler is of special
interest.

In time-master mode network scheduler periodically broad-
casts time markers, notifying the start of a next schedule slot.
The time to send a time-marker is determined by RTOS system
timer: if enough RTOS major time frames have passed from
previous marker sendout, a next marker is broadcasted.

In time-slave mode network scheduler handles received
markers, updates current slot number and sends packets al-
lowed for transmission down the stack.

To measure time slot size required for a given network
configuration we must study the worst case data transfer
scenario in detail:

1) Schedule slot starts with system partition window. Time
master broadcasts time marker into the network. In the
worst case time marker is sent right in the end of system
partition.

2) As nodes in the network are not synchronized, slave node
is late with time-marker handling for the time, equal to
it’s major time frame.

3) Slave node starts packet transmission at the end of it’s
system partition time window in the worst case.

4) The worst case time of packet tranmission can be es-
timated with multiplication of queue size by maximum
packet size, divided by baudrate of the network slowest
channel.

Schedule slot duration satisfies the following:

𝑇𝑠𝑙𝑜𝑡 >= 𝑇𝑠𝑦𝑠,1 + 𝑇𝑠𝑦𝑠,2 + 𝑇2 + 𝑇𝑜𝑛𝑤𝑖𝑟𝑒

𝑇𝑠𝑙𝑜𝑡 = 𝑁 · 𝑇1, 𝑁 ∈ Z

𝑇𝑜𝑛𝑤𝑖𝑟𝑒 ≈
𝑇𝑥𝑄𝑢𝑒𝑢𝑒𝑆𝑖𝑧𝑒 · 𝑃𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒

𝑆𝑝𝑤𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

where 𝑇𝑠𝑙𝑜𝑡 — schedule slot duration, 𝑇𝑖 — i-th module major
time frame, 𝑇𝑠𝑦𝑠,𝑖 — i-th module system partition period,
𝑇𝑜𝑛𝑤𝑖𝑟𝑒 — end-to-end time to transfer a packet.

Figure 5: Worst case packet transmission scenario

However, this approach is only applicable when RTOS
major time frame is several times smaller than the schedule



Figure 6: Network desynchronization problem

slot, which may correspond to the case of transmission big
packets over a slow network.

Scenario of a schedule slot smaller then RTOS major time
frame is not supported for two reasons:

∙ First, because of module schedule desynchronization
different modules work with different schedules.

∙ Second, even with synchronized schedules, there are dead
schedule slots, during which transmission is impossible
with existent hardware.

Both of the problems may be resolved with support on
protocol and hardware level, as it is done in MIL-STD-1553
protocol [14].

Both problems could be avoided entirely if we give up the
model of guaranteed maximum delay of packet delivery in
favour of model with guaranteed bandwidth. This will require
a corresponding redesign of the network scheduling algorithm
[15].

C. Coordinated packet buffering

In order to satisfy teal-time requirements data transmission
must be guaranteed (no packet loss) and fast (low latency).
Both of these parameters are affected by the number of buffers
in the packet transmission path — each buffer adds excess
latency for packet copying between the buffers. Besides,
buffer coordination must be done: packet must be retrieved
from a buffer only in case there is buffer space in the next
one — otherwise packet is dropped.

In developed network stack we use buffering scheme, re-
motely similar to sk_buff in OS Linux [16]. It’s main feature
is the lack of buffering in network scheduler and switch:
scheduler requests buffer space from a NIC driver through the
switch, and only in case of success uses it as a destination
buffer in ‘RECEIVE_QUEUING_MESSAGE‘ system call.
This way excess latency for packet copying is excluded, kernel
and NIC driver buffers are coordinated with each other.

Coordination of NIC driver buffer and SpaceWire controller
buffers is done by the hardware developer on used platforms.
Coordination of controller buffers of sender and receiver is
provided by the SpaceWire protocol by means of the Flow
Control Token mechanism.

It is important to note that total coordination of all buffers
is possible for SpaceWire networks, though it is unwanted. It
may lead to slow data flow blocking outgoing port of a switch
and making it unusable for a faster and more critical data flow
— this effectively breaks data flow isolation.

It is technically feasible to get rid of userspace buffer, as it
is done in io_uring in Linux OS [17] — using circular buffer

Figure 7: Coordinated packet buffering

in memory block shared among user and system partitions.
However, this will require serious development effort from
system and user partition developers, will make verification
harder and will make it impossible to transmit data from
multiple partitions.

D. Driver Finite State Machine

Final step towards a deterministic network stack is to
develop a harware interaction algorithm that has a bounded
WCET.

Data exchange with SpaceWire controller is done via four
seperate DMA-channels: data and descriptor channels for
transmission and for reception. Each of the channels requires
driver to start DMA tarnsfer list, monitor the end of transfer
and handle it — reclaim driver buffers, pass received packet
to user partition.

Figure 8: Single DMA-transfers

An important technique used to increase network stack
throughput is replace simple DMA-transfers with DMA list
transfers. It allows to use network bandwidth more effeciently,
but complicates control of precise packet transmission time.



Figure 9: DMA list transfer

SpaceWire driver main activity may be viewed as handler
of transitions in some Finite State Machine (FSM). FSMs for
transmissions and reception are independent and equivalent,
thus we need to describe only one of them. It’s state is
defined by values of three flags: 𝑡𝑥_𝑑𝑚𝑎_𝑜𝑛 (at least one
DMA channel is running), 𝑡𝑥_𝑑𝑒𝑠𝑐_𝑑𝑚𝑎_𝑜𝑛 (DMA descriptor
channel is running), 𝑡𝑥_𝑑𝑎𝑡𝑎_𝑑𝑚𝑎_𝑜𝑛 (DMA data channel is
running).

Figure 10: FSM for DMA TX transfers

Transitions in an automaton are performed either automat-
ically or based on current DMA controller state:

1) Transition �1 — FSM initialization.
2) Transition �2 — start of DMA transfers (both for

data and descriptor channels) for all currently buffered
packets.

3) Transition �3 — end of a DMA list transfer on data
channel.

4) Transition�4 — end of a DMA list transfer on descriptor
channel.

5) Transition �5 — equivalent to transition �3.
6) Transition �6 — equivalent to transition �4.
7) Transition �7 — reclamation of buffers used in trans-

mission.

In order to increase network stack throughput transmission
buffers are freed not only after finishing all DMA transfers

(transition �7) but also after every transmitted packet, pro-
vided that controller allows to monitor this.

Tranisions �2 and �7 have the most impact on WCET.
However, as none of the transitions have busy-wait infinite
cycles, their WCET is a linear function of transmission queue
size and maximum packet size.

V. NETWORK STACK VERIFICATION

A. Testbench
In order to verify the network stack we manufactured a

testbench and connected different development boards with a
cable. Low quality SpaceWire cable was manufactured without
struct conformance to the specification [18] and without mod-
ern cable production technology [19]. Providing a common
ground with a seperate cable turned out ot be an essential
condition for robust communication.

Figure 11: Manufactured SpaceWire cable

Testbench composed of two development boards showed the
network stack to be valid for data transmission and reception
in a simplest network.

B. Test suite
For verification purposes we developed an automated test

suite. It operates in loopback mode, when two ports of single
device are connected with a cable. Tests in a test suite:

1) Test for correct addressing: device sends packets to
different correct addresses. Each receiver must get all
packets addressed to him and must not receive any excess
messages.

2) Test for incorrect addressing: device sends packets
to several non-existend addresses. All packets must be
dropped.

3) Estimation of packet delivery time: device transmits N
packets to each of several destinations and receives them.
For each packet, end-to-end delay is measured. Sampling
averages, sampling deviations and maximum values are
computed. The test is considered successful if it’s result
does not exceed the theoretical limit.

4) Test of network schedule enforcement. Device sends
packets to three addresses in three distinct time slots.
In any given schedule slot scheduler must send only the
allowed packets.



VI. CONCLUSION

In this paper we presented an architecture of deterministic
SpaceWire network stack for an ARINC 653 RTOS. In order
to implement it several tasks were solved:

1) Unification of network stack architecture. We managed
to unify interfaces of two distinct implementations of
SpaceWire controller and provided system integrator with
platform-independent way of configuring the network.

2) Development of network scheduler. We used the mech-
anism of SpaceWire time markers to enforce network
schedule for the case of big time slot (slow exchange
of big packets between packet modules).

3) Coordination of buffering in network stack. To min-
imize packet loss in case of buffer overflows inside
network stack we coordinate all our RTOS buffers on
SpaceWire packet transmission.

4) Development of FSM to handle DMA transfers. We
use list of DMA transfers to transfer packets over the
network and the DMA handling code has a bounded
Worst Case Execution Time (WCET).

The developed architecture is implemented in RTOS CLOS,
developed at ISP RAS, and verified on availible hardware used
in space industry.
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