
Call Graph Construction for Operating System
Kernels
Sergey Ignatov

Software Engineering Department
Ivannikov Institute for System Programming of the Russian Academy of Sciences

Moscow, Russia
ignatov.sa@ispras.ru

Abstract—This study focuses on the challenging area of pointer
analysis in C, with a particular emphasis on constructing
complete and accurate call graphs using point-to analysis for
function pointers. Recognizing the NP-completeness of pointer
analysis, our study aims to overcome the challenges of accurately
and efficiently analyzing programs written in pointer-based
languages such as C. We start with a thorough review of existing
methodologies for constructing call graphs, highlighting different
approaches and their applicability to different scenarios, from
optimization to error detection. We introduce a flow-insensitive,
context-insensitive points-to analysis algorithm specifically de-
signed for constructing call graphs. The presented algorithm is
based on the mathematical abstraction of set constraints and is
efficiently solved in near linear time. Encountering the realities
of parsing real code bases, we describe the problems encoun-
tered, such as pointer arithmetic, inline assembler directives,
type casting, and self-modifying code - elements that together
present significant barriers. Through comparative analysis, we
match our proposed methodology against the existing type-
based approaches, providing insights into its relative strengths of
reducing the number of indirect call edges of the call graph by
a factor of one. The performance of our algorithm is evaluated
on a large code base such as the Linux kernel, with the ultimate
goal of reducing cycles in the call graph and dividing the kernel
into independent components suitable for formal verification.

Index Terms—call graph, points-to analysis, interprocedural
program analysis

I. INTRODUCTION

Analyzing programs written in pointer-based languages like
C requires specific approaches to handle pointers effectively,
especially considering that pointer analysis itself is an NP-
complete problem [1]–[3]. In many cases, pointer analysis is
the foundational step that leads the way to a host of other
problem solutions, as other analyses often build on its results.
The one of such dependent problems is complete call graph
construction that includes both direct and indirect calls, the
latter executed through the use of pointers, to ensure a holistic
understanding of the program’s execution flow. Furthermore,
building a call graph do not merely serve for understanding the
execution flow; they are also crucial prerequisite for the de-
composition of programs into their independent components.

There are numerous approaches to analyzing pointers, each
differing in terms of accuracy, execution time, and memory
requirements. Various applications of pointer analysis neces-
sitate different approaches and methods [4]. For instance,

optimization tasks may benefit from certain approaches, while
error detection or program understanding may require others.

It’s important to note that pointer analysis doesn’t lend itself
to linear scalability. To address the complexities associated
with analyzing substantial program code for call graph con-
struction problem, practitioners often turn to heuristics like
type-based analysis. Nevertheless, this approach suffers from
insufficient accuracy, although it has advantages in scalabil-
ity, computational speed and ease of implementation. The
main reason for using type-based analysis is its simplicity of
implementation and absence of false-negative errors, in the
worst case the result will be a large number of non-existent
edges in the call graph, but all true branches will be present
there. Therefore, this method is often used to analyze critical
components, such as operating system kernels, in order to
control security policy [5]–[9].

In this study, our focus is on points-to analysis for function
pointers, with the aim of constructing a complete and precise
call graph. Subsequently, we conduct a comprehensive survey
of extant methodologies employed for call-graph construc-
tion. Following this, we introduce a flow-insensitive, context-
insensitive point-to analysis tailored for call-graph construc-
tion. We describe the algorithm and its rationale in detail to
provide a clear understanding of the operational framework.
In addition, we discuss the problems inherent in dissecting
real code, including such complexities as pointer arithmetic,
embedded assembler directives, complex type conversion, and
the presence of self-modifying code. Furthermore, we engage
in a comparative analysis between our suggested algorithm and
data type-centric analysis approaches. Lastly, we subject the
constructed call-graph to evaluation to determine its effective-
ness in addressing the task of decomposing the Linux kernel
into manageable components suitable for formal verification.

A. Points-to Analysis for Function Pointers

Points-to analysis is a technique used to determine the
possible values of pointers in a program. When dealing with
function pointers, points-to analysis identifies the set of func-
tions that a pointer may refer to during program execution.
This information is crucial for constructing an accurate call
graph, particularly if this graph is to be employed in the task
of decomposing a codebase into isolated components suitable

for formal verification. Extraneous and false edges may lead
to fictitious cycles in the graph, making it impossible to isolate
small subgraphs.

II. CONSTRUCTING CALL GRAPHS

A. Call graph problem

When considering the problem of constructing a call graph,
we must understand the ways a function can be called indi-
rectly.

1) Call by a function pointer. Commonly used in C for
dynamic dispatch and passing callbacks.

2) C++ virtual method invocation using vtables containing
pointers to virtual methods allows dynamic dispatching
depending on the object type.

3) Smalltalk-style send-method dynamic dispatch. In-
volves dynamic type lookup through class hierarchy
for method selection in languages like Objective-C and
JavaScript.

4) C++ exceptions.

B. Dynamic analysis

This class of methods represents a cost-effective and
straightforward approach for constructing call graphs, partic-
ularly in the absence of source code. Indeed, its relevance
is crucial for analyzing binary-level programs [10]. This can
include various instrumentation techniques for recording call
directions during the program execution. Expanding beyond
binary analysis, this technique exhibits versatility by also
addressing challenges in languages without strong typing, like
JavaScript [11]. Even with Java’s strong typing facilitating
static analysis, the JIT compilation process introduces a need
for optimizations, where dynamic analysis [12] plays a crucial
role in balancing compilation speed and execution perfor-
mance.

C. Type matching

Another class of simple methods is used when it is necessary
to eliminate false negatives, and speed and reliability of imple-
mentation are more important than accuracy of analysis. The
basic idea is to map call-sites to functions with corresponding
type signatures, that works well in strong typed languages.
In some cases type signatures are used in combination and
improve the result of pointer analysis [13]. The significance
of improvement indicate that type signatures is a fairly unique
entity in programs and for this reason the results obtained by
this analysis are not much worse than the exact analysis.

In the realm of security applications, employing type match-
ing emerges as a cost-effective strategy for applying security
policies and ensuring control flow integrity [5]–[9], [14], [15].

D. Static analysis

All program analyses are in general NP-complete problems
[1], and pointer analysis is no exception. Therefore, there are
many variants of pointer analysis [16]–[18] that operate with
different generalization approaches to achieve the right balance
between the complexity of the analysis and the accuracy of the

results. These differences in approaches, can be categorized
into the following classes.

1) flow-sensitivity: Flow-sensitive analysis considers differ-
ent execution paths in a function, deriving unique solutions
for different locations within a procedure. In contrast, flow-
insensitive analysis makes no such distinctions, combining
solutions from all paths reachable at a given point. A more
relaxed version of flow-insensitive analysis accepts all ex-
pressions as possible even without considering their order of
execution.

2) context-sensitivity: Context-sensitive analysis considers
all variants of a function call and analyzes functions for each
call context, which definitely leads to an exponential growth
in the number of states and requires specialized unification
techniques. Context-independent analyses do not distinguish
between function call contexts, this definitely leads to a
reduction in computational complexity, but loses in accuracy
and leads to false positives.

3) field-sensitivity: Field-sensitive analysis looks at dif-
ferent parts of a structure separately, while field-insensitive
analysis treats everything as one. Consider a structure with
two pointer fields: field-sensitive analysis maintains separate
information for each field, while field-insensitive analysis
considers both fields to point to the same memory locations.

Another well-known approach, Steensgaard’s algorithm
[17], is to combine the stored information of a pointer graph.
If two variables a and b point to A therefore the common
variable a/b points to A. The opposite is also true, if a points
to A and B, we can merge and represent what now points to
A/B. This significantly reduce the memory and computation
required for the analysis.

III. ALGORITHM

Our analysis focuses on function pointer values within
programs. Function pointers, by nature, offer systematic sim-
plification for analysis due to restrictions imposed by the
C standard [19]. These include prohibitions against multipli-
cation, stringent conditions for addition or subtraction, and
limitations on bitwise operations (exceptions are detailed in
sections III-C1). Since our goal is a comprehensive program
analysis, we ignore internal control structures and represent the
program as a sequence of function pointer operations. In the
same way, we also abstract interprocedural pointer relations
with respect to the memory in which the values of these
pointers are stored. If a global variable is assigned a value
at a certain point in the program, then it can have that value
in all places where that variable is used.

A. Definitions

Let P is a program, where:

P = {F, Istatic × Idynamic} (1)
Fi = {S} (2)

• F is a set of functions.
• S is a set of statements.

TABLE I: Abstract Pointer Operations

statement set relations
a = &func a ⊇ {func}
a = &b a ⊇ ref(b)
a = *b a ⊇ deref(b)
*a = b deref(a) ⊇ b
a[i] = b a ⊇ b
a = b[i] a ⊇ b
a.field = b field ⊇ b
a = b.field a ⊇ field
func() { return a } func ⊇ a
a = func() a ⊇ func
func(..., i:a, ...) funcparami ⊇ a

• Istatic = Iarch ∪ Ifp is a set of static inputs known
at compile time such as architecture dependent values
(Iarch) and function labels (Ifp).

• Idynamic is a set of runtime inputs and parameters.
Assuming that Idynamic has no impact on Ifp or the

destinations of indirect control transfer allows us to isolate
the subset of the program Pfp that involves only operations
on function pointers Sfp ⊆ S.

Pfp = {Ffp, Ifp} (3)
Ffp = {Sfp, Ifp} (4)
Sfp 7→ Sabstract (5)

B. Abstract Pointer Operations

We can represent pointer relations as a system of set
constraints [20] and turn the pointer analysis problem into a
constraint set problem (CSP) by assume pointer operations as
an inclusion between a set of pointers and a set of function
values. In the abstract constraint-set language (see Table I),
we define the ref and deref operations - taking the address
and taking the pointer value, respectively.

Let us give an explanation of the semantics of our abstract
operations.

1) {} - a set of function labels.
2) a - a program’s function pointer variable.
3) ref(a) - operator of taking a reference to a variable.
4) deref(a) - operator of obtaining a pointer value.
5) func - a set of return values of a function.
6) funcparami - a set of values of a function parameter.
We define pointer operations, such as pointer reference,

dereference, and pointer assignment, through sets relations.

[reference]
a ⊇ ref(b) b ⊇ x

a ⊇ x
(6)

[dereference]
a ⊇ deref(b) b ⊇ x

a ⊇ x
(7)

[assignment]
deref(a) ⊇ b a ⊇ x

x ⊇ b
(8)

The efficient solution of CSP can be obtained thought
representing the sets inclusions as a directed graph that we call
Set Transition Graph; In which nodes are representations of
subsets of corresponding elements, such as variables, function

EXAMPLE 1: Set Transition Graph of the simple program.
Demonstrates the inference of set constraints for trivial oper-
ations and what kind of graphs this leads to.

1 typedef void (*func_t)();
2 void fn1() {}
3 void fn2() {}
4 void fn3() {}
5 struct obj_t {
6 func_t fn;
7 func_t *fp;
8 }
9 void work(struct obj_t *obj, func_t f) {

10 func_t a, p;
11

12 a = fn1; a ⊇ {fn1}
13 obj->fp = &a; obj_t.fp ⊇ ref(a)
14 p = *obj->fp; p ⊇ deref(obj_t.fp)
15

16 p(); icall1 : p
17 obj->fn(); icall2 : obj_t.fn
18 f(); icall3 : work.param2

19 }
20 void main() {
21 struct obj_t obj = {
22 .fn = fn2, obj_t.fn ⊇ {fn2}
23 .fp = 0
24 };
25 work(&obj, fn3); work.param2 ⊇ {fn3}
26 }

icall1 p obj t.fp a {fn1}

icall2 obj t.fn {fn2}

icall3 work.param2 {fn3}

deref ref

return values, function parameters, structure fields, and edges
represent inclusion of one set into another.

Let us examine a simple program (see example 1) and the
corresponding set constraint for it. In the function work the
value of the function fn1 is assigned to the variable a, which
in terms of sets means that fn1 is a subset of a. Then the
address of a is assigned to the field obj->fp of the structure
obj. Thus, all values of a can be addressed via obj->fp,
which means that a is a subset of obj->fp. Obviously, the
set of a particular instance of obj->fp will be a subset of
the type obj_t.fp, which generalizes access to the fields
of the structure to their type. In a similar way, we also unify
array elements by considering an array and every its elements
as one common set. Later in the example, the pointer field
obj->fp is assigned to the variable p, followed by an indirect
function call icall1 from the value in p. The set of destination

EXAMPLE 2: Propagation of pointer assignment.
Demonstrates the inference of set constraints in case of pointer
assignments.

1 void work(func_t * fp) {
2 *fp = fn1; deref(work.param1) ⊇ {fn1}
3 }
4 void main() {
5 func_t fp;
6 work(&fp); work.param1 ⊇ ref(fp)
7 fp(); icall : fp
8 }

icall fp work.param1 {fn1}
ref deref

addresses for the given indirect call site is the same as p,
which includes at least the set of obj->fp. For indirect calls
icall2 and icall3 the destination addresses are sets of the field
obj_t.fp, since we generalize field access, and the sets of
f, which is the function’s parameter work.param2.

The operator deref has no transitivity over ⊇, for this
reason, inclusion something as a subset of deref(τ) requires
resolution of the set of τ , in other words, in C terms,
assignment by a pointer requires finding the set of its values.
In the example 2, pointer assignment turns into inclusion of
the assigned value fn1 in the set of deref(work.param1).
Therefore, to solve the set system, we should take all sets of
work.param1 in Set Transition Graph and propagate deref
edge into the assigned value.

C. Distinguishing Abstract Model from Real C Implementa-
tion

It’s important to acknowledge the differences between the
abstract model and its counterpart in original implementation
and actual hardware execution.

1) Pointer arithmetic: is a fundamental feature in C, allow-
ing directly manipulate memory addresses. This capability is
crucial for efficient data processing and system programming.
However, the situation becomes notably different when we
deal with function pointers, which refer to the locations of
functions in memory. First off, it’s important to understand
that arithmetic on function pointers is generally undefined
behavior in C. Primarily because function pointers don’t work
in the same way as data pointers. For data pointers, arithmetic
operations like addition or subtraction make sense because
data elements can be stored sequentially in memory, like
the elements of an array. This is not the case for functions.
Functions are not laid out back-to-back in memory; their
arrangement is determined by the compiler and the operating
system. As a result, adding or subtracting values to or from a
function pointer doesn’t carry a clear or consistent meaning.

But yet, operations on function pointers might be used in
specific, low-level contexts, like managing where a piece of
code resides in memory for hardware interactions. Addressing
these unique cases requires specialized knowledge tailored to
the specific hardware being dealt with and is beyond the scope
of this article.

2) Inline assembler: as a compiler extension can be consid-
ered as a special function with inputs, outputs and clobbered
registers. If the latter serves as critical information for the
compiler, the explicit specification of inputs and outputs makes
it possible to model inline assembler statement as a separate
extension of our abstract model and only if the inputs or
outputs somehow get into the Set Transition Graph, otherwise
it can be ignored. Importantly, the current work and its
discussions do not address this facet.

3) Type casting: in C can lead to behaviors that are difficult
to model abstractly. However, the immutable nature of function
pointers allows us to ignore type casting over function pointers
themselves. Likewise, the approach of generalized modeling
of object fields by their types allows us to avoid this problem
if a program preserves the semantics of types, but for some
reason uses type casting only when passing from one place
to another. At the same time, if the program behavior violates
the type semantics for data pointers, it may lead to loose links
in the set transition graph. To ensure that this situation does
not occur, we verify the integrity of the graph by validating
that all function labels in the graph are reachable from all call
sites and that there are no leaf nodes in the graph other than
a function label.

Another problem arises when a program performs type
conversion by offset from beginning of an object, including
negative offset. This can be called type conversion in an
arbitrary place of objects. Similarly for casting scalar types
to a pointer. These problems require further study.

4) Self-modifying code: For performance reasons, the
Linux kernel extensively relies on self-modifying code to
implement features such as STATIC CALL, JUMP LABEL,
DYNAMIC FTRACE and BPF. The first is used to override
the target of a particular call site, which helps avoid CPU
stalls due to branch prediction. It functions similarly to an
indirect call by retrieving a function pointer from a global
variable and updating that variable accordingly. The latter is
intended to dynamically change the macros likely/unlikely
for conditional branches and does not affect the call graph.
FTRACE, designed for function tracing, is optional in the
kernel and not discussed further in this analysis, as we disabled
this config option during our investigation. The last is the
feature allows for placing dynamically generated code into
the kernel. However, invoking BPF programs occurs through a
single entry point. The code is generated from the BPF virtual
machine and includes a set of functions allowed to be called
by BPF programs, known as BPF helpers. We create artificial
edges in the call graph from the entry point to the set of BPF
helpers. Anyway, self-modifying code is a challenging task to
analyze and requires careful investigation of each use case.

TABLE II: Performance of the call graph construction

Program Lines
of code

#of
functions

#of indirect
call-sites

#of indirect
functions

#of CG
direct edges

#of type-based
indirect edges

#of static-analisys
indirect edges

linux-5.15.153 tinyconfig 734.2K 23 308 939 2393 51 195 6355 2150
linux-5.15.153 defaultconfig 3.1M 107 022 8286 37 387 404 749 159 896 35 276
linux-5.15.153 allyesconfig 23M 513 335 61 237 328 874 2 643 969 5 049 734 579 091
linux-6.1.83 tinyconfig 775.6K 24 848 968 2483 52 030 6518 2203
linux-6.1.83 defaultconfig 3.3M 113 679 8500 39 477 385 376 169 919 36 876
linux-6.1.83 allyesconfig 26.4M 503 600 58 804 315 881 2 159 046 4 763 771 558 579

IV. RESULTS

The accuracy, and scalability of our proposed points-to anal-
ysis algorithm were validated through empirical evaluation on
Linux kernel versions 5.15.153 and 6.1.83. For our evaluation,
we implemented algorithm of set transition graph construction
in the CodeQL query language. We conducted experiments
with our algorithm on a system featuring a 2.4GHz 8-core
Intel Core i9 processor and 64GB of RAM. The results
was compared to signature matching approach, the evaluation
criterion being the reduction of the number of edges in the
call graph.

Summary: Compared to the type-based approach, our al-
gorithm has reduced the number of indirect edges of the call
graph by 4-8 times (see table II). Moreover, the larger the code
base size is, the more efficient the algorithm is. This is due
to the fact that with increasing code size, in the type-based
approach, the number of indirect edges grows faster than the
size of the code, accumulating false positives.

V. CONCLUSIONS AND FUTURE WORK

Preliminary results demonstrate the algorithm’s potential
for decomposing complex code structures such as the Linux
kernel. Representing the pointer operation to a set relation
turns the problem into a comprehensible mathematical prob-
lem. Generalization of fields and access to arrays allows to
make the analysis simple while maintaining an acceptable level
of accuracy and avoiding exponential growth of computational
complexity.

Looking ahead, there are several directions for future ex-
ploration and development:

• Comparative Analysis of Static Analysis Methods:
The next step is to compare our methodology with a
number of other static analysis approaches and differ-
ent sensitivities. This can provide an understanding of
the necessary sufficiency to obtain the preferred results.
Moreover, extending the application scope of our method
to user space software and libraries will be critical in
determining its generalized applicability across different
software paradigms.

• Generalization of Dynamically Allocated Objects and
Arrays: An important area for further research is gener-
alization strategies for arrays and dynamically allocated
objects. Evaluating the impact of such generalizations on
the performance, accuracy and precision of our algorithm
will contribute to its usefulness.

• Modeling Inline Assembler and Hardware Semantics:
The presence of inline assembly code introduces addi-
tional complexity to program analysis. Although we can
ignore the inline assembler in some cases, in general
we need to model the operations and take into account
the semantics of the hardware. Future work will focus
on developing extensions that accurately address these
aspects.

• Addressing Type Conversion Challenges: Casting types
at arbitrary locations poses significant challenges. Conse-
quently, we aim to thoroughly explore these scenarios,
developing robust modeling techniques that accurately
reflect program semantics.

REFERENCES

[1] V. T. Chakaravarthy and S. Horwitz, “On the non-approximability of
points-to analysis,” Acta Informatica, vol. 38, no. 8, pp. 587–598, Jul.
2002. [Online]. Available: http://link.springer.com/10.1007/s00236-002-
0081-8

[2] W. Landi and B. G. Ryder, “Pointer-induced aliasing: a problem
taxonomy,” in Proceedings of the 18th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages - POPL ’91.
Orlando, Florida, United States: ACM Press, 1991, pp. 93–103. [Online].
Available: http://portal.acm.org/citation.cfm?doid=99583.99599

[3] S. Horwitz, “Precise flow-insensitive may-alias analysis is NP-
hard,” ACM Transactions on Programming Languages and Systems,
vol. 19, no. 1, pp. 1–6, Jan. 1997. [Online]. Available:
https://dl.acm.org/doi/10.1145/239912.239913

[4] M. Hind, “Pointer analysis: haven’t we solved this problem yet?”
in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering. Snowbird
Utah USA: ACM, Jun. 2001, pp. 54–61. [Online]. Available:
https://dl.acm.org/doi/10.1145/379605.379665

[5] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,
and M. Payer, “Control-Flow Integrity: Precision, Security, and
Performance,” ACM Computing Surveys, vol. 50, no. 1, pp. 1–33, Jan.
2018. [Online]. Available: https://dl.acm.org/doi/10.1145/3054924

[6] B. Niu and G. Tan, “Modular control-flow integrity,” in
Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. Edinburgh
United Kingdom: ACM, Jun. 2014, pp. 577–587. [Online]. Available:
https://dl.acm.org/doi/10.1145/2594291.2594295

[7] Y. Zhang, X. Liu, C. Sun, D. Zeng, G. Tan, X. Kan,
and S. Ma, “ReCFA: Resilient Control-Flow Attestation,” in
Annual Computer Security Applications Conference. Virtual Event
USA: ACM, Dec. 2021, pp. 311–322. [Online]. Available:
https://dl.acm.org/doi/10.1145/3485832.3485900

[8] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-Grained
Control-Flow Integrity for Kernel Software,” in 2016 IEEE
European Symposium on Security and Privacy (EuroS&P).
Saarbrucken: IEEE, Mar. 2016, pp. 179–194. [Online]. Available:
http://ieeexplore.ieee.org/document/7467354/

[9] J. Li, X. Tong, F. Zhang, and J. Ma, “Fine-CFI: Fine-Grained Control-
Flow Integrity for Operating System Kernels,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 6, pp. 1535–1550, Jun.
2018. [Online]. Available: http://ieeexplore.ieee.org/document/8269390/

[10] R. Jalan and A. Kejariwal, “Trin-trin: Who’s calling? a pin-based
dynamic call graph extraction framework,” International Journal of
Parallel Programming, vol. 40, pp. 410–442, 2012.

[11] T. R. Toma and M. S. Islam, “An efficient mechanism of generating call
graph for javascript using dynamic analysis in web application,” in 2014
International Conference on Informatics, Electronics & Vision (ICIEV).
IEEE, 2014, pp. 1–6.

[12] T. Xie and D. Notkin, “An empirical study of java dynamic call graph
extractors,” University of Washington CSE Technical Report, pp. 02–12,
2002.

[13] D. Atkinson, “Accurate Call Graph Extraction of Programs with
Function Pointers Using Type Signatures,” in 11th Asia-Pacific Software
Engineering Conference. Busan, Korea: IEEE, 2004, pp. 326–335.
[Online]. Available: http://ieeexplore.ieee.org/document/1371935/

[14] B. Niu and G. Tan, “RockJIT: Securing Just-In-Time Compilation
Using Modular Control-Flow Integrity,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
Scottsdale Arizona USA: ACM, Nov. 2014, pp. 1317–1328. [Online].
Available: https://dl.acm.org/doi/10.1145/2660267.2660281

[15] D. Zeng, B. Niu, and G. Tan, “MazeRunner: Evaluating the
Attack Surface of Control-Flow Integrity Policies,” in 2021
IEEE 20th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom). Shenyang,
China: IEEE, Oct. 2021, pp. 810–821. [Online]. Available:
https://ieeexplore.ieee.org/document/9724388/

[16] L. O. Andersen, “Program analysis and specialization for the c program-
ming language,” 1994.

[17] B. Steensgaard, “Points-to analysis in almost linear time,” in
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages - POPL ’96. St. Petersburg
Beach, Florida, United States: ACM Press, 1996, pp. 32–41. [Online].
Available: http://portal.acm.org/citation.cfm?doid=237721.237727

[18] X.-X. S. Zhang, Practical pointer aliasing analysis. Rutgers The State
University of New Jersey, School of Graduate Studies, 1998.

[19] “American national standard for information systems - ansi x3.159-
1989 ; programming language - c,” 1989. [Online]. Available:
https://api.semanticscholar.org/CorpusID:197537566

[20] A. Aiken, “Set constraints: Results, applications and future directions,”
in International Workshop on Principles and Practice of Constraint
Programming. Springer, 1994, pp. 326–335.

