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Abstract—The paper  focuses  on  Linux kernel  fuzzing  and
explores potential methods for integrating recent advancements
in  this  field.  It  evaluates  existing  software  solutions  and
emphasizes  the  importance  of  Continuous  Integration  (CI)  to
streamline  the  fuzzing  process.  The  paper  proposes  the
development  of  a  new  web  application.  This  application  will
include all necessary functions to maximize the use of fuzzing
tools  under  the  conditions  of  economic  sanctions  and  closed
software development.
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I. INTRODUCTION

Incorporating  fuzz  testing,  particularly  Linux  kernel
fuzzing,  into  the  Continuous  Integration  (CI)  pipeline  for
operating system development is a significant step towards
fortifying  security  against  contemporary  software  threats.
The  importance  of  fuzzing  the  Linux  kernel  cannot  be
overstated, as evidenced by the substantial number of high
and critical severity vulnerabilities (CVEs) [1]-[5] identified
through the use of  tools  like syzkaller  [6].  These findings
emphasize  the  importance  of  vulnerabilities  within  the
kernel,  which  pose  significant  threats  to  system  security.
While  this  approach  has  been  shown  to  be  effective  in
detecting vulnerabilities, cybersecurity experts face various
technical, economic, and political challenges that hinder the
smooth  integration  of  fuzz  testing  into  development
workflows.

Integrating  fuzzing  into  the  CI  pipeline  can  be  a
challenging task due to the need to incorporate this testing
method into established and intricate development processes.
This  requires  automating  testing  procedures,  setting  up
infrastructure for running fuzzing operations, and automating
outcome handling [7]. The integration is further complicated
by economic and political factors, particularly the challenges
of managing closed development environments or deploying
open-source fuzzing tools that depend on proprietary cloud
services. The latter may be particularly challenging due to
economic  sanctions  affecting  Russian  citizens  and
companies.

However,  the  value  of  fuzzing  tools  like  syzkaller  is
underscored  by  their  proven  performance  and  outcomes,
despite the integration challenges. Over six years, syzkaller
has identified over 6339 bugs within the Linux kernel, with
5280  subsequently  fixed.  Nevertheless,  the  process  of
discovering these bugs is often protracted, taking on average
more than 405 days to detect a single bug  [8]. This delay

highlights the complexities and the extended timelines that
can precede the identification of vulnerabilities by such tools.

The aim of this work is to create an application that is
appropriate  for  the  Russian  market.  The  application  is
intended to optimize fuzz testing capabilities and simplify the
integration of the kernel fuzzing process into the CI pipeline
for  operating  system development  and  its  modules  within
companies that develop domestic operating systems.

II. CONTEMPORARY CHALLENGES IN LINUX KERNEL

FUZZING IN RUSSIA

Syzkaller  stands  out  as  one  of  the  leading  and  most
actively developed tools for Linux kernel fuzzing. However,
the full utilization of this system is unavailable not only by
the reliance on Google Cloud services  [10], which are not
accessible to users in Russia, but also by internal corporate
policies that restrict using foreign cloud services.

The Technological Center for the Study of Linux Kernel
Security,  established by ISP RAS, outlines a methodology
for using this tool with limited functionality [11]. The usage
scenarios include:

 Simple fuzzing scheme. Utilizing standalone setups
with different configurations.

 Fuzzing farm scheme. Forming a group of setups
with  identical  configurations  and  organized
information exchange.

Syzkaller comprises the following key services:

 syz-ci, which integrates the kernel fuzzing process
into  CI,  allows  for  the  centralized  collection  of
fuzzing  artifacts,  such  as  logs,  and  bugs  in
syzkaller's operation. It also automates the process
of  updating  syz-manager's  executables  when  new
commits  appear  in  the  syzkaller  repository.
Moreover, this service rebuilds the kernel under test
to keep it up to date with the target branch in the
kernel repository.

 syz-manager, which manages the virtual machines
where fuzzing is conducted.

 syz-hub, which enables the connection of multiple
syz-manager  instances  into  a  cluster  for  data
exchange. This service helps to minimize the corpus
and to determine the necessity of reproducing each
crash.
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 dashboard, which provides users with information
about discovered crashes, organized into bug pages.
It also offers statistics on all syz-manager instances,
as well as access to fuzzing artifacts, such as build
configurations,  logs  of  virtual  machines,  and
compiled  images.  Furthermore,  this  service
manages  task  formation  for  syz-ci  and  offers  an
email-based bug-reporting system.

From the entire list of services, the methodology suggests
using only two: syz-hub and syz-manager.

The integration of the various approaches presented in the
methodology  of  the  Technological  Center  into  the  kernel
testing  process  does  not  permit  the  full  utilisation  of  the
capabilities of Syzkaller. Moreover, it does not facilitate the
organisation of the continuous fuzzing process,  as the key
services are not applied: syz-ci and dashboard. In order for
syz-ci to be launched, a working dashboard is necessary.

To compare the schemes described in the Technological
Center (TC) methodology with the methodology described in
the  syzkaller  documentation,  the  organization  of  service
interaction is depicted in the Fig. 1.

Fig. 1. Syzkaller usage scenarios comparison

The process of the operating system kernel fuzz-testing
within the continuous integration cycle can be divided into 5
key stages that form a pipeline:

 Source code changes.

 Building the kernel.

 Starting the fuzzing instance.

 Collection of bugs and fuzzing artifacts.

 Feedback on fuzzing results.

The  continuous  kernel  fuzzing  pipeline  can  be
represented as a scheme, as shown in Fig. 2, where the steps
that  can  be  automated  thanks  to  syz-ci  are  highlighted  in
blue, and the steps that can be automated thanks to dashboard
are highlighted in red.

Fig. 2. Continuous kernel fuzzing pipeline

The implementation of the dashboard alternative service
will permit the introduction of syz-ci into the Technological
Center methodology, which has already been formed. This
will  allow for  the  automation  of  stages  that  are  currently
unavailable  to  Russian  developers.  Furthermore,  it  will
permit the organization of continuous fuzzing of operating
system kernels.

III. FUZZING OS KERNEL WITH EXTERNAL KERNEL

MODULES

An  operating  system  may  include  proprietary
developments  from  the  company,  such  as  external  kernel
modules  and drivers  [12].  Developments  can include both
user-space  utilities  and  Loadable  Kernel  Modules  (LKM).
Therefore,  the  structure  of  the  operating  system  kernel
development repositories may appear as follows:

 A repository for the Linux kernel source code.

 A repository for the external loadable kernel module
(LKM) source code.

Syzkaller is capable of supporting fuzzing and collecting
coverage on external kernel modules. However, in order for
this functionality to be utilized, a manually built unstripped
module for the target kernel must be present in the rootfs
image.  Additionally,  the  module  must  be  pre-loaded  at  a
fixed address by the init process. Consequently, the use of
syz-ci in the context of continuous fuzzing is not possible.

The requirement for a single syz-manager instance in syz-
ci configuration to monitor changes in only one repository,
which should contain both the kernel code and the external
kernel  module  code,  hinders  the  setup  of  a  continuous
fuzzing  process.  Furthermore,  integrating  LKM  into  the
kernel is necessary to address the issue of correctly collecting
coverage  encountered  by  syzkaller  when  testing  dynamic
modules.

As  in [13],  "Loadable  kernel  modules  (LKM)  are  a
blessing for the system administrator, but a nightmare for an
incident responder. LKMs were initially designed to provide
dynamic functionality by altering a running kernel without
rebooting",  but  this  solution  has  brought  complexities  in
crash analysis and coverage collection during fuzzing.

To address this issue, specific kernel patches are required
to  enable  the  compilation  of  the  kernel  with  the  external
kernel module included.

Fig. 3 shows three repositories:

 Repository with the Linux source code.

 Repository with kernel module source code.

 Repository with the outcome of merging the first
two repositories with patches.

Fig. 3. Typical project scheme for the continuous fuzzing



Consequently, the service to be developed must integrate
the  LKM  code  into  the  Linux  kernel  code  based  on  the
results of the CI job of building the kernel or LKM.

Furthermore, it is possible to implement such a service
within  a  dashboard  alternative,  which  will  significantly
simplify  the  implementation  of  continuous  kernel  fuzzing
within the CI pipeline.

IV. REVIEW OF EXISTING SOLUTIONS

The time required to discover vulnerabilities and the time
needed to achieve maximum code coverage with tests both
increase  proportionally  to  the  size  of  the  codebase  of  the
project being tested. Due to the significant amount of time
required  for  fuzzing,  integrating  these  tools  into  the
conventional  "linear"  CI/CD  pipeline  poses  challenges.
Additionally,  it's  important  to  consider  that  the  fuzzing
process itself demands substantial computational resources.
In  the  context  of  automated  kernel  fuzzing  to  maximize
efficiency,  this  could  involve  monitoring  the  status  of
dozens, sometimes even more, virtual machines within which
multiple test suites of system call chains may be executed in
parallel. Consequently, researchers in this field have found a
solution to these challenges by creating managed clusters of
virtual machines. On these clusters, fuzzers are run, and the
results of their work are sent to reporting systems, thereby
optimizing  the  fuzzing  process  within  the  constraints  of
available resources and workflow integration.

Prominent  examples  of  platforms  for  implementing
continuous fuzzing include ClusterFuzz [14], OSS-Fuzz [15],
and  syzbot  [16].  ClusterFuzz  stands  out  as  a  scalable
infrastructure designed for fuzzing user-space projects. This
project is utilized by Google to test all its products and serves
as a fuzzing component in the OSS-Fuzz project. ClusterFuzz
offers  a  lot  of  features  for  integrating  fuzzing  into  the
software development process. Notably, its high scalability is
commendable, as it can be deployed on a cluster of up to
100,000 virtual machines. The system's ability to deduplicate
crashes,  minimize  test  cases,  identify  the  commit  that
introduced a regression in the repository, and automatically
log discovered crashes in bug tracking systems like Jira or
Monorail also merits mention.

ClusterFuzz operates on the Google Cloud Platform and
leverages several services:

 Compute  Engine  (not  strictly  necessary,  fuzzing
bots can run anywhere).

 App Engine. The App Engine instance provides a
web interface  to  access  crashes,  statistics  and for
scheduling cron jobs.

 Cloud Storage.

 Cloud Datastore.

 Cloud Pub/Sub.

 BigQuery.

 Stackdriver Logging and Monitoring.

It's  possible  to  run  ClusterFuzz  locally  using  Google
Cloud emulators for those not requiring these dependencies,
though it's worth noting that features dependent on BigQuery
and  Stackdriver  might  be  limited  due  to  the  absence  of
emulator support.

OSS-Fuzz  represents  a  production  instance  of
ClusterFuzz, enriched by the OSS-Fuzz repository's content,

including  build  scripts  and  project.yaml  files  with  contact
information. Tailored for the testing of open-source projects,
OSS-Fuzz delivers a robust infrastructure aimed at verifying
their reliability and security through automated fuzzing.

Both  OSS-Fuzz  and  ClusterFuzz  are  engineered  to
streamline the fuzz testing process for user-space programs,
aiding  in  the  detection  of  vulnerabilities  and  enhancing
software dependability via comprehensive automated testing.
Nevertheless,  it's  critical  to  understand  that  they  are  not
adapted  for  Linux  kernel  testing.  Their  design  and
methodologies  are  specifically  intended  for  user-space
applications,  rendering  them inappropriate  for  kernel-level
examination.

The syzbot platform is built around the syzkaller fuzzer.
It continuously scans the main branches of the Linux kernel
repository,  rebuilding  the  kernel  when  new  commits  are
detected. It also restarts fuzzing instances and automatically
reports any discovered bugs to mailing lists, in addition to
offering a monitoring dashboard that displays the status of all
bugs. Syzbot is also noted for its scalability, as it can utilize
either Google Compute Engine (a virtual machine in Google
Cloud)  or  local  Qemu  virtual  machines  for  fuzzing
operations.  Furthermore,  syzbot  enables  the  testing  of
patches for bugs that have a generated reproducer, enhancing
the  efficiency  of  addressing  and  correcting  vulnerabilities
within the kernel.

All of the aforementioned systems were developed under
the guidance of Google, and therefore rely on Google Cloud
services for their operation:

 Google Compute Engine provides virtual machines
for fuzzing operations.

 Google Cloud Storage serves as an object storage
solution for archiving coverage files, corpora, build
files, or executables.

 Google App Engine offers a platform for delivering
monitoring  dashboards  and  managing  the  fuzzing
process.

Therefore, it can be concluded that it is impossible to use
such systems under sanctions pressure or when developing
software in a closed environment. TriforceAFL is an example
of  clusterization  without  using  paid  services.  However,  it
coordinates multiple fuzzing instances through the creation
of shared folders and writing of bash scripts, which is not as
automated  as  the  aforementioned  systems.  Although  the
automation  is  imperfect,  it  permits  the  fuzzing  of  LKM
modules.

A  comparison  of  fuzzing  farms  presented  in  Table  1
reveals that Syzbot is the most promising system in the field
of Linux kernel fuzzing. However, it lacks the functionality
offered by farms in the field of user-space program fuzzing,
such  as  support  for  bug-tracking  systems  like  Jira.
Additionally, it does not allow the user to fully deploy a local
instance of the system, as some of the services within syzbot
have a direct dependence on cloud services.

TABLE I. FUZZING PLATFORMS COMPARISON

Feature
Cluster
Fuzz

OSS-Fuzz syzbot
Triforce

AFL
Linux  kernel
fuzzing support

- - + +

LKM  fuzzing
support

- - +/- +

Running  a  local
instance 

+/- - +/- +



Feature
Cluster
Fuzz

OSS-Fuzz syzbot
Triforce

AFL
Linux  kernel
fuzzing support

- - + +

Dependence  on
cloud services

+ + + -

GUI + + + -
Bug-tracking
systems support

+ + + -

Alerting + + + -
Active
development

+ + + -

Ways  of
interaction
between  systems
components

HTTP,
RPC

HTTP,
RPC

HTTP,
RPC, SSH

File
system,
SSH

V. PROPOSED SOLUTION

This  paper  proposes  the  development  of  a  web-based
application  to  replace  the  current  service  integrated  into
syzkaller—the dashboard.  This  web application will  allow
users  to  access  information  on  active  fuzz  testing  setups,
detected crashes, and generated reproducers.

In order to fully utilize syzkaller and ensure continuous
fuzz testing,  it  is  proposed that  additional  functionality be
added  to  the  web  application  under  development.  This
functionality will involve integrating the LKM code with the
operating  system kernel,  saving  the  results  to  a  specified
repository, as defined in the syz-ci configuration file.

The proposed solution offers several advantages:

 There is no need for modifications in the syzkaller's
source  code,  which  avoids  conflicts  during
synchronization between the original repository and
the local version, thereby simplifying maintenance
by the company's staff.

 Isolating  the  functionality  into  a  separate  service
facilitates the automation of launching continuous
fuzzing processes. Additionally, it does not restrict
the  addition of  extra  functionalities.  For  instance,
the  service  could  be  integrated  into  a  reporting
system,  allowing  an  administrator  to  integrate
modules into the kernel and rebuild images for all
syz-manager instances with a simple button press in
the web interface. This approach not only enhances
operational efficiency but also opens the door for
future  expansions  and  customizations  tailored  to
specific organizational needs.

The backend component of a web application consists of
three logical components:

 Dashboard  API  (Application  Programming
Interface) for syz-managers and syz-ci.

 Frontend API.

 Integration service.

The  dashboard  API  is  designed  to  emulate  the
functionality of the original dashboard, with minor changes.
This component allows forming entities to store information
about running syz-managers and their configurations, as well
as  to  obtain  information  about  detected  crashes.
Consequently,  the key functionality of syz-ci  is  employed,
and the dependency on the dashboard service is eliminated.
Instead, a full-fledged analog will be provided, which can be
freely customized to meet the requirements of a particular
company. Furthermore, this approach will eliminate the need

to manually track the information provided by each of dozens
of instances, as it will introduce bug report aggregation.

The frontend API  is  essential  for  enabling interactions
between  the  web  client  and  the  server.  This  component
implements the logic required for displaying information to
the user, including the generation of pages with bugs and the
tracking of fuzzing instances states.

The  integration  service  is  an  API  that  facilitates  the
receipt  of  integration  requests  and  a  set  of  asynchronous
tasks for interacting with the file system and Git. These tasks
include the following:

 Moving directories and files.

 Applying patches.

 Cloning repositories.

 Generating and sending commits.

The interaction between the components of the proposed
continuous fuzzing solution in the Fig. 4 is as follows:

1. The  software  developer  makes  changes  to  the
source  code  of  the  tracked  projects  (Linux  and
LKM) in the version control system.

2. The Linux and LKM CI build jobs are started in the
development VCS respectively.

3. If successful, a notification is sent to the Integration
Service.

4. The  integration  service  starts  the  process  of
integrating the two repositories into a 3rd repository
(fuzzing repository).

5. The syz-ci pulls changes and starts the kernel build
for fuzzing, runs tests and starts fuzzing.

6. The  syz-ci  sends  build  information  results,  syz-
managers’ errors, coverage reports and corpora to
the dashboard API.

7. The syz-manager sends detected crashes and work
statistics to the dashboard API.

8. The security analyst then reviews the crashes found
by syzkaller and creates issues in the bug tracking
system.

Fig. 4. Components interaction

VI. IMPLEMENTATION

To construct the application, an architecture as depicted
in  the  Fig.  5  was  chosen.  The  components  related  to  the



frontend aspect  of  the  application are  highlighted in  blue,
backend  components  are  in  purple,  databases  and  object
storage are marked in green, and syzkaller components are in
yellow.

Fig. 5. Proposed system architecture

It is assumed that syzkaller components will be deployed
on high-performance servers with a large number of virtual
machines  running  syz-manager  instances.  The  fuzzing
process itself will be launched by the systemd service that
runs a Docker container with syz-ci.

Docker Compose enables the execution of all  frontend
and  backend  services  of  a  web  application  in  Docker
containers.  This  approach  simplifies  the  development  and
management of services, while also providing opportunities
for scaling and rapid deployment of the entire system.

Consequently,  the  infrastructure  scheme  of  the  entire
project will take the form depicted in Fig. 6.

Fig. 6. Infrastructure scheme of the entire project

A. Backend Implementation

The server-side of the application is divided into several
services: the backend and the FileManager. The backend is
developed  using  Python  [17] with  the  Django  REST
Framework [18]. It comprises three types of components:

 Models, which describe the objects in the database.

 Views, which define the REST API handlers.

 Serializers,  which  detail  how  to  represent  data
received from the client or the database.

Data storage is managed with MongoDB  [19], utilizing
the  Djongo  library  [20] to  facilitate  the  application's
connection to the database and the description of models.

To  handle  tasks  such  as  tracking  new  commits  and
integrating two repositories into one, the Celery task queue
[21] is  employed,  which  is  integrated  into  a  Django
application.

The task of collecting fuzzing artifacts, such as fuzzing
corpus and coverage reports, is handled by the FileManager
service, written in Python using the FastAPI framework [22].
This service accepts HTTP PUT requests from syz-ci, stores
files  in  object  storage,  and  stores  links  to  files  in  the
database.

B. Frontend Implementation

The  website  is  designed  as  a  responsive  Single  Page
Application  (SPA)  [23].  A  Single  Page  Application  is  a
website consisting of one HTML document that dynamically
updates and does not require the entire page to reload during
use.

The client-side was developed using the JavaScript  [24]
programming language, with the VueJS framework [25] and
Vuetify [26]. Vuetify, in combination with VueJS, facilitates
the rapid development of the web application's user interface.
The vue-router library is responsible for organizing routing
to  match  application  requests  with  specific  interface
components.  Meanwhile,  the Axios library  [27] is  used to
form HTTP requests to the web application's backend.

This  architecture  not  only  supports  the  seamless
integration and functionality of the proposed web application
but  also  provides  a  scalable  and  efficient  platform  for
continuous  fuzzing  and  vulnerability  management.  By
leveraging  modern  frameworks  and  libraries,  the  system
ensures  a  robust  infrastructure  for  enhancing  software
security through automated fuzzing processes.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a web-based application aimed
at  enhancing  the  accessibility  of  continuous  kernel  fuzz
testing.  By  leveraging  the  capabilities  of  syzkaller  and
addressing the limitations of existing solutions, our proposed
system offers a scalable platform for continuous fuzz testing
that is specifically designed to meet the needs of developers
operating  under  various  constraints,  including  economic
sanctions and closed development environments.

The proposed solution enables the full implementation of
syz-ci within the continuous integration pipeline. It provides
a convenient interface for displaying fuzzing information and
facilitates  the  integration  of  LKMs  into  the  Linux  kernel
source code for further continuous testing.

Our  solution  offers  two  key  advantages:  maintenance
simplicity  and  service  isolation.  The  combination  of
contemporary development libraries and frameworks, robust
backend implementation, and a user-friendly frontend design
provides the foundation for a platform that streamlines the
continuous kernel fuzzing process.

As  we  improve  our  solution,  we  plan  to  extend  its
capabilities by adding support for bug tracking systems such
as Jira to streamline vulnerability management.

In addition to improvements to facilitate  integration of
fuzzing into CI, we also intend to incorporate state-of-the-art
approaches into the platform with the objective of enhancing
the  efficiency  of  the  fuzzing  process  itself,  such  as
KernelGPT  [28].  The  authors  explore  the  use  of  Large
Language Models  (LLMs)  to  automatically  infer  syzkaller
specifications  for  improved  kernel  fuzzing.  KernelGPT's
approach to iteratively infer and refine specifications presents
a compelling avenue for automating and improving syscall
sequence  generation,  thereby  enhancing  coverage  and
uncovering previously unknown bugs.



In addition, SyzDirect [29] introduces a novel method for
directed greybox fuzzing (DGF) tailored to the Linux kernel.
SyzDirect  improves  bug  reproduction  and  patch  testing
efficiency by using scalable static analysis to identify critical
system calls and argument conditions to reach target code
locations.  Its  ability  to  quickly  reproduce  more  bugs  and
reach more target patches than conventional methods makes
it a promising direction for future efforts in directed fuzzing
for patch verification.

Finally, the integration of approaches to automate fuzzing
with promising enhancements to the process itself will allow
us to achieve better results in exploring vulnerabilities in the
Linux kernel. By identifying these vulnerabilities at an earlier
stage  of  the  development  process,  we  can  reduce  the
likelihood of exploitation.
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