
Development and Implementation of Syzkaller
Dashboard Alternative for Continuous Linux Kernel

Fuzzing

Alexey Panov1,2, ORCID: 0000-0002-0046-0766
Vladislav Nikolaev1,3, ORCID: 0009-0009-3257-1311

1.PJSC Astra Group, 26 Varshavskoe Sh., Moscow, 117105, Russian Federation
2.Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS), 25 Alexander Solzhenitsyn Str., Moscow, 109004,

Russian Federation
3.Moscow Polytechnic University (Moscow Polytech), 38 Bolshaya Semyonovskaya Str., Moscow, 107023, Russian Federation

Abstract—The paper focuses on Linux kernel fuzzing and
explores potential methods for integrating recent advancements
in this field. It evaluates existing software solutions and
emphasizes the importance of Continuous Integration (CI) to
streamline the fuzzing process. The paper proposes the
development of a new web application. This application will
include all necessary functions to maximize the use of fuzzing
tools under the conditions of economic sanctions and closed
software development.

Keywords—kernel fuzzing, syzkaller, continuous integration,
web application

I. INTRODUCTION

Incorporating fuzz testing, particularly Linux kernel
fuzzing, into the Continuous Integration (CI) pipeline for
operating system development is a significant step towards
fortifying security against contemporary software threats.
The importance of fuzzing the Linux kernel cannot be
overstated, as evidenced by the substantial number of high
and critical severity vulnerabilities (CVEs) [1]-[5] identified
through the use of tools like syzkaller [6]. These findings
emphasize the importance of vulnerabilities within the
kernel, which pose significant threats to system security.
While this approach has been shown to be effective in
detecting vulnerabilities, cybersecurity experts face various
technical, economic, and political challenges that hinder the
smooth integration of fuzz testing into development
workflows.

Integrating fuzzing into the CI pipeline can be a
challenging task due to the need to incorporate this testing
method into established and intricate development processes.
This requires automating testing procedures, setting up
infrastructure for running fuzzing operations, and automating
outcome handling [7]. The integration is further complicated
by economic and political factors, particularly the challenges
of managing closed development environments or deploying
open-source fuzzing tools that depend on proprietary cloud
services. The latter may be particularly challenging due to
economic sanctions affecting Russian citizens and
companies.

However, the value of fuzzing tools like syzkaller is
underscored by their proven performance and outcomes,
despite the integration challenges. Over six years, syzkaller
has identified over 6339 bugs within the Linux kernel, with
5280 subsequently fixed. Nevertheless, the process of
discovering these bugs is often protracted, taking on average
more than 405 days to detect a single bug [8]. This delay

highlights the complexities and the extended timelines that
can precede the identification of vulnerabilities by such tools.

The aim of this work is to create an application that is
appropriate for the Russian market. The application is
intended to optimize fuzz testing capabilities and simplify the
integration of the kernel fuzzing process into the CI pipeline
for operating system development and its modules within
companies that develop domestic operating systems.

II. CONTEMPORARY CHALLENGES IN LINUX KERNEL

FUZZING IN RUSSIA

Syzkaller stands out as one of the leading and most
actively developed tools for Linux kernel fuzzing. However,
the full utilization of this system is unavailable not only by
the reliance on Google Cloud services [10], which are not
accessible to users in Russia, but also by internal corporate
policies that restrict using foreign cloud services.

The Technological Center for the Study of Linux Kernel
Security, established by ISP RAS, outlines a methodology
for using this tool with limited functionality [11]. The usage
scenarios include:

 Simple fuzzing scheme. Utilizing standalone setups
with different configurations.

 Fuzzing farm scheme. Forming a group of setups
with identical configurations and organized
information exchange.

Syzkaller comprises the following key services:

 syz-ci, which integrates the kernel fuzzing process
into CI, allows for the centralized collection of
fuzzing artifacts, such as logs, and bugs in
syzkaller's operation. It also automates the process
of updating syz-manager's executables when new
commits appear in the syzkaller repository.
Moreover, this service rebuilds the kernel under test
to keep it up to date with the target branch in the
kernel repository.

 syz-manager, which manages the virtual machines
where fuzzing is conducted.

 syz-hub, which enables the connection of multiple
syz-manager instances into a cluster for data
exchange. This service helps to minimize the corpus
and to determine the necessity of reproducing each
crash.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

 dashboard, which provides users with information
about discovered crashes, organized into bug pages.
It also offers statistics on all syz-manager instances,
as well as access to fuzzing artifacts, such as build
configurations, logs of virtual machines, and
compiled images. Furthermore, this service
manages task formation for syz-ci and offers an
email-based bug-reporting system.

From the entire list of services, the methodology suggests
using only two: syz-hub and syz-manager.

The integration of the various approaches presented in the
methodology of the Technological Center into the kernel
testing process does not permit the full utilisation of the
capabilities of Syzkaller. Moreover, it does not facilitate the
organisation of the continuous fuzzing process, as the key
services are not applied: syz-ci and dashboard. In order for
syz-ci to be launched, a working dashboard is necessary.

To compare the schemes described in the Technological
Center (TC) methodology with the methodology described in
the syzkaller documentation, the organization of service
interaction is depicted in the Fig. 1.

Fig. 1. Syzkaller usage scenarios comparison

The process of the operating system kernel fuzz-testing
within the continuous integration cycle can be divided into 5
key stages that form a pipeline:

 Source code changes.

 Building the kernel.

 Starting the fuzzing instance.

 Collection of bugs and fuzzing artifacts.

 Feedback on fuzzing results.

The continuous kernel fuzzing pipeline can be
represented as a scheme, as shown in Fig. 2, where the steps
that can be automated thanks to syz-ci are highlighted in
blue, and the steps that can be automated thanks to dashboard
are highlighted in red.

Fig. 2. Continuous kernel fuzzing pipeline

The implementation of the dashboard alternative service
will permit the introduction of syz-ci into the Technological
Center methodology, which has already been formed. This
will allow for the automation of stages that are currently
unavailable to Russian developers. Furthermore, it will
permit the organization of continuous fuzzing of operating
system kernels.

III. FUZZING OS KERNEL WITH EXTERNAL KERNEL

MODULES

An operating system may include proprietary
developments from the company, such as external kernel
modules and drivers [12]. Developments can include both
user-space utilities and Loadable Kernel Modules (LKM).
Therefore, the structure of the operating system kernel
development repositories may appear as follows:

 A repository for the Linux kernel source code.

 A repository for the external loadable kernel module
(LKM) source code.

Syzkaller is capable of supporting fuzzing and collecting
coverage on external kernel modules. However, in order for
this functionality to be utilized, a manually built unstripped
module for the target kernel must be present in the rootfs
image. Additionally, the module must be pre-loaded at a
fixed address by the init process. Consequently, the use of
syz-ci in the context of continuous fuzzing is not possible.

The requirement for a single syz-manager instance in syz-
ci configuration to monitor changes in only one repository,
which should contain both the kernel code and the external
kernel module code, hinders the setup of a continuous
fuzzing process. Furthermore, integrating LKM into the
kernel is necessary to address the issue of correctly collecting
coverage encountered by syzkaller when testing dynamic
modules.

As in [13], "Loadable kernel modules (LKM) are a
blessing for the system administrator, but a nightmare for an
incident responder. LKMs were initially designed to provide
dynamic functionality by altering a running kernel without
rebooting", but this solution has brought complexities in
crash analysis and coverage collection during fuzzing.

To address this issue, specific kernel patches are required
to enable the compilation of the kernel with the external
kernel module included.

Fig. 3 shows three repositories:

 Repository with the Linux source code.

 Repository with kernel module source code.

 Repository with the outcome of merging the first
two repositories with patches.

Fig. 3. Typical project scheme for the continuous fuzzing

Consequently, the service to be developed must integrate
the LKM code into the Linux kernel code based on the
results of the CI job of building the kernel or LKM.

Furthermore, it is possible to implement such a service
within a dashboard alternative, which will significantly
simplify the implementation of continuous kernel fuzzing
within the CI pipeline.

IV. REVIEW OF EXISTING SOLUTIONS

The time required to discover vulnerabilities and the time
needed to achieve maximum code coverage with tests both
increase proportionally to the size of the codebase of the
project being tested. Due to the significant amount of time
required for fuzzing, integrating these tools into the
conventional "linear" CI/CD pipeline poses challenges.
Additionally, it's important to consider that the fuzzing
process itself demands substantial computational resources.
In the context of automated kernel fuzzing to maximize
efficiency, this could involve monitoring the status of
dozens, sometimes even more, virtual machines within which
multiple test suites of system call chains may be executed in
parallel. Consequently, researchers in this field have found a
solution to these challenges by creating managed clusters of
virtual machines. On these clusters, fuzzers are run, and the
results of their work are sent to reporting systems, thereby
optimizing the fuzzing process within the constraints of
available resources and workflow integration.

Prominent examples of platforms for implementing
continuous fuzzing include ClusterFuzz [14], OSS-Fuzz [15],
and syzbot [16]. ClusterFuzz stands out as a scalable
infrastructure designed for fuzzing user-space projects. This
project is utilized by Google to test all its products and serves
as a fuzzing component in the OSS-Fuzz project. ClusterFuzz
offers a lot of features for integrating fuzzing into the
software development process. Notably, its high scalability is
commendable, as it can be deployed on a cluster of up to
100,000 virtual machines. The system's ability to deduplicate
crashes, minimize test cases, identify the commit that
introduced a regression in the repository, and automatically
log discovered crashes in bug tracking systems like Jira or
Monorail also merits mention.

ClusterFuzz operates on the Google Cloud Platform and
leverages several services:

 Compute Engine (not strictly necessary, fuzzing
bots can run anywhere).

 App Engine. The App Engine instance provides a
web interface to access crashes, statistics and for
scheduling cron jobs.

 Cloud Storage.

 Cloud Datastore.

 Cloud Pub/Sub.

 BigQuery.

 Stackdriver Logging and Monitoring.

It's possible to run ClusterFuzz locally using Google
Cloud emulators for those not requiring these dependencies,
though it's worth noting that features dependent on BigQuery
and Stackdriver might be limited due to the absence of
emulator support.

OSS-Fuzz represents a production instance of
ClusterFuzz, enriched by the OSS-Fuzz repository's content,

including build scripts and project.yaml files with contact
information. Tailored for the testing of open-source projects,
OSS-Fuzz delivers a robust infrastructure aimed at verifying
their reliability and security through automated fuzzing.

Both OSS-Fuzz and ClusterFuzz are engineered to
streamline the fuzz testing process for user-space programs,
aiding in the detection of vulnerabilities and enhancing
software dependability via comprehensive automated testing.
Nevertheless, it's critical to understand that they are not
adapted for Linux kernel testing. Their design and
methodologies are specifically intended for user-space
applications, rendering them inappropriate for kernel-level
examination.

The syzbot platform is built around the syzkaller fuzzer.
It continuously scans the main branches of the Linux kernel
repository, rebuilding the kernel when new commits are
detected. It also restarts fuzzing instances and automatically
reports any discovered bugs to mailing lists, in addition to
offering a monitoring dashboard that displays the status of all
bugs. Syzbot is also noted for its scalability, as it can utilize
either Google Compute Engine (a virtual machine in Google
Cloud) or local Qemu virtual machines for fuzzing
operations. Furthermore, syzbot enables the testing of
patches for bugs that have a generated reproducer, enhancing
the efficiency of addressing and correcting vulnerabilities
within the kernel.

All of the aforementioned systems were developed under
the guidance of Google, and therefore rely on Google Cloud
services for their operation:

 Google Compute Engine provides virtual machines
for fuzzing operations.

 Google Cloud Storage serves as an object storage
solution for archiving coverage files, corpora, build
files, or executables.

 Google App Engine offers a platform for delivering
monitoring dashboards and managing the fuzzing
process.

Therefore, it can be concluded that it is impossible to use
such systems under sanctions pressure or when developing
software in a closed environment. TriforceAFL is an example
of clusterization without using paid services. However, it
coordinates multiple fuzzing instances through the creation
of shared folders and writing of bash scripts, which is not as
automated as the aforementioned systems. Although the
automation is imperfect, it permits the fuzzing of LKM
modules.

A comparison of fuzzing farms presented in Table 1
reveals that Syzbot is the most promising system in the field
of Linux kernel fuzzing. However, it lacks the functionality
offered by farms in the field of user-space program fuzzing,
such as support for bug-tracking systems like Jira.
Additionally, it does not allow the user to fully deploy a local
instance of the system, as some of the services within syzbot
have a direct dependence on cloud services.

TABLE I. FUZZING PLATFORMS COMPARISON

Feature
Cluster
Fuzz

OSS-Fuzz syzbot
Triforce

AFL
Linux kernel
fuzzing support

- - + +

LKM fuzzing
support

- - +/- +

Running a local
instance

+/- - +/- +

Feature
Cluster
Fuzz

OSS-Fuzz syzbot
Triforce

AFL
Linux kernel
fuzzing support

- - + +

Dependence on
cloud services

+ + + -

GUI + + + -
Bug-tracking
systems support

+ + + -

Alerting + + + -
Active
development

+ + + -

Ways of
interaction
between systems
components

HTTP,
RPC

HTTP,
RPC

HTTP,
RPC, SSH

File
system,
SSH

V. PROPOSED SOLUTION

This paper proposes the development of a web-based
application to replace the current service integrated into
syzkaller—the dashboard. This web application will allow
users to access information on active fuzz testing setups,
detected crashes, and generated reproducers.

In order to fully utilize syzkaller and ensure continuous
fuzz testing, it is proposed that additional functionality be
added to the web application under development. This
functionality will involve integrating the LKM code with the
operating system kernel, saving the results to a specified
repository, as defined in the syz-ci configuration file.

The proposed solution offers several advantages:

 There is no need for modifications in the syzkaller's
source code, which avoids conflicts during
synchronization between the original repository and
the local version, thereby simplifying maintenance
by the company's staff.

 Isolating the functionality into a separate service
facilitates the automation of launching continuous
fuzzing processes. Additionally, it does not restrict
the addition of extra functionalities. For instance,
the service could be integrated into a reporting
system, allowing an administrator to integrate
modules into the kernel and rebuild images for all
syz-manager instances with a simple button press in
the web interface. This approach not only enhances
operational efficiency but also opens the door for
future expansions and customizations tailored to
specific organizational needs.

The backend component of a web application consists of
three logical components:

 Dashboard API (Application Programming
Interface) for syz-managers and syz-ci.

 Frontend API.

 Integration service.

The dashboard API is designed to emulate the
functionality of the original dashboard, with minor changes.
This component allows forming entities to store information
about running syz-managers and their configurations, as well
as to obtain information about detected crashes.
Consequently, the key functionality of syz-ci is employed,
and the dependency on the dashboard service is eliminated.
Instead, a full-fledged analog will be provided, which can be
freely customized to meet the requirements of a particular
company. Furthermore, this approach will eliminate the need

to manually track the information provided by each of dozens
of instances, as it will introduce bug report aggregation.

The frontend API is essential for enabling interactions
between the web client and the server. This component
implements the logic required for displaying information to
the user, including the generation of pages with bugs and the
tracking of fuzzing instances states.

The integration service is an API that facilitates the
receipt of integration requests and a set of asynchronous
tasks for interacting with the file system and Git. These tasks
include the following:

 Moving directories and files.

 Applying patches.

 Cloning repositories.

 Generating and sending commits.

The interaction between the components of the proposed
continuous fuzzing solution in the Fig. 4 is as follows:

1. The software developer makes changes to the
source code of the tracked projects (Linux and
LKM) in the version control system.

2. The Linux and LKM CI build jobs are started in the
development VCS respectively.

3. If successful, a notification is sent to the Integration
Service.

4. The integration service starts the process of
integrating the two repositories into a 3rd repository
(fuzzing repository).

5. The syz-ci pulls changes and starts the kernel build
for fuzzing, runs tests and starts fuzzing.

6. The syz-ci sends build information results, syz-
managers’ errors, coverage reports and corpora to
the dashboard API.

7. The syz-manager sends detected crashes and work
statistics to the dashboard API.

8. The security analyst then reviews the crashes found
by syzkaller and creates issues in the bug tracking
system.

Fig. 4. Components interaction

VI. IMPLEMENTATION

To construct the application, an architecture as depicted
in the Fig. 5 was chosen. The components related to the

frontend aspect of the application are highlighted in blue,
backend components are in purple, databases and object
storage are marked in green, and syzkaller components are in
yellow.

Fig. 5. Proposed system architecture

It is assumed that syzkaller components will be deployed
on high-performance servers with a large number of virtual
machines running syz-manager instances. The fuzzing
process itself will be launched by the systemd service that
runs a Docker container with syz-ci.

Docker Compose enables the execution of all frontend
and backend services of a web application in Docker
containers. This approach simplifies the development and
management of services, while also providing opportunities
for scaling and rapid deployment of the entire system.

Consequently, the infrastructure scheme of the entire
project will take the form depicted in Fig. 6.

Fig. 6. Infrastructure scheme of the entire project

A. Backend Implementation

The server-side of the application is divided into several
services: the backend and the FileManager. The backend is
developed using Python [17] with the Django REST
Framework [18]. It comprises three types of components:

 Models, which describe the objects in the database.

 Views, which define the REST API handlers.

 Serializers, which detail how to represent data
received from the client or the database.

Data storage is managed with MongoDB [19], utilizing
the Djongo library [20] to facilitate the application's
connection to the database and the description of models.

To handle tasks such as tracking new commits and
integrating two repositories into one, the Celery task queue
[21] is employed, which is integrated into a Django
application.

The task of collecting fuzzing artifacts, such as fuzzing
corpus and coverage reports, is handled by the FileManager
service, written in Python using the FastAPI framework [22].
This service accepts HTTP PUT requests from syz-ci, stores
files in object storage, and stores links to files in the
database.

B. Frontend Implementation

The website is designed as a responsive Single Page
Application (SPA) [23]. A Single Page Application is a
website consisting of one HTML document that dynamically
updates and does not require the entire page to reload during
use.

The client-side was developed using the JavaScript [24]
programming language, with the VueJS framework [25] and
Vuetify [26]. Vuetify, in combination with VueJS, facilitates
the rapid development of the web application's user interface.
The vue-router library is responsible for organizing routing
to match application requests with specific interface
components. Meanwhile, the Axios library [27] is used to
form HTTP requests to the web application's backend.

This architecture not only supports the seamless
integration and functionality of the proposed web application
but also provides a scalable and efficient platform for
continuous fuzzing and vulnerability management. By
leveraging modern frameworks and libraries, the system
ensures a robust infrastructure for enhancing software
security through automated fuzzing processes.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a web-based application aimed
at enhancing the accessibility of continuous kernel fuzz
testing. By leveraging the capabilities of syzkaller and
addressing the limitations of existing solutions, our proposed
system offers a scalable platform for continuous fuzz testing
that is specifically designed to meet the needs of developers
operating under various constraints, including economic
sanctions and closed development environments.

The proposed solution enables the full implementation of
syz-ci within the continuous integration pipeline. It provides
a convenient interface for displaying fuzzing information and
facilitates the integration of LKMs into the Linux kernel
source code for further continuous testing.

Our solution offers two key advantages: maintenance
simplicity and service isolation. The combination of
contemporary development libraries and frameworks, robust
backend implementation, and a user-friendly frontend design
provides the foundation for a platform that streamlines the
continuous kernel fuzzing process.

As we improve our solution, we plan to extend its
capabilities by adding support for bug tracking systems such
as Jira to streamline vulnerability management.

In addition to improvements to facilitate integration of
fuzzing into CI, we also intend to incorporate state-of-the-art
approaches into the platform with the objective of enhancing
the efficiency of the fuzzing process itself, such as
KernelGPT [28]. The authors explore the use of Large
Language Models (LLMs) to automatically infer syzkaller
specifications for improved kernel fuzzing. KernelGPT's
approach to iteratively infer and refine specifications presents
a compelling avenue for automating and improving syscall
sequence generation, thereby enhancing coverage and
uncovering previously unknown bugs.

In addition, SyzDirect [29] introduces a novel method for
directed greybox fuzzing (DGF) tailored to the Linux kernel.
SyzDirect improves bug reproduction and patch testing
efficiency by using scalable static analysis to identify critical
system calls and argument conditions to reach target code
locations. Its ability to quickly reproduce more bugs and
reach more target patches than conventional methods makes
it a promising direction for future efforts in directed fuzzing
for patch verification.

Finally, the integration of approaches to automate fuzzing
with promising enhancements to the process itself will allow
us to achieve better results in exploring vulnerabilities in the
Linux kernel. By identifying these vulnerabilities at an earlier
stage of the development process, we can reduce the
likelihood of exploitation.

REFERENCES

[1] "CVE-2023-2124" [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2023-2124

[2] "CVE-2022-48502" [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2022-48502

[3] "CVE-2022-0850" [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2022-0850

[4] "CVE-2022-1055" [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2022-1055

[5] "CVE-2016-9555" [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2016-9555

[6] "Coverage-guided kernel fuzzing with syzkaller" [Online]. Available:
https://lwn.net/Articles/677764

[7] H. Shi, et al., "Industry practice of coverage-guided enterprise linux
kernel fuzzing", In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2019, pp. 986-995.

[8] J. Bursey, A. Amiri Sani, and Z. Qian, "SyzRetrospector: A Large-
Scale Retrospective Study of Syzbot", arXiv preprint
arXiv:2401.11642, Jan 2024.

[9] "Mezhdunarodnyi proekt po razrabotke yadra Linux [International
Linux Kernel Development Project]" [Online]. Available:
https://portal.linuxtesting.ru/about-linux-kernel.html (in Russian)

[10] "Google Cloud Documentation" [Online]. Available:
https://cloud.google.com/docs

[11] "Metodika fazzing-testirovaniya yadra [Kernel fuzzing method]"
[Online]. Available:
https://portal.linuxtesting.ru/LVCFuzzingMethod.html (in Russian)

[12] "Nvidia Unix Driver Archive" [Online]. Available:
https://www.nvidia.com/en-us/drivers/unix

[13] K. Jones "Loadable kernel modules", login: The Magazine of
USENIX and SAGE, 2001, vol. 26, no. 7.

[14] "ClusterFuzz - Scalable fuzzing infrastructure." [Online]. Available:
https://google.github.io/clusterfuzz

[15] "OSS-Fuzz - continuous fuzzing for open source software." [Online].
Available: https://google.github.io/oss-fuzz

[16] "syzbot" [Online]. Available: https://syzkaller.appspot.com/upstream

[17] "Python" [Online]. Available: https://www.python.org/

[18] "Django REST framework" [Online]. Available: https://www.django-
rest-framework.org/

[19] "MongoDB Documentation" [Online]. Available:
https://www.mongodb.com/docs/

[20] "Django and MongoDB database connector" [Online]. Available:
https://www.djongomapper.com/

[21] "Celery - Distributed Task Queue" [Online]. Available:
https://docs.celeryq.dev/en/stable/index.html

[22] "FastAPI framework" [Online]. Available:
https://fastapi.tiangolo.com/

[23] V. Gavrilă, L. Băjenaru, C. Dobre. "Modern single page application
architecture: a case study", Studies in Informatics and Control, 2019,
vol. 28, no. 2, pp. 231-238.

[24] "JavaScript" [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/JavaScript

[25] "Vue.js" [Online]. Available: https://vuejs.org/

[26] "Vuetify - Vue Component Framework" [Online]. Available:
https://vuetifyjs.com/en/

[27] "Axios HTTP Client" [Online]. Available:
https://axios-http.com/docs/intro

[28] C. Yang, Z. Zhao, L. Zhang, "KernelGPT: Enhanced Kernel Fuzzing
via Large Language Models", arXiv preprint arXiv:2401.00563, Dec
2023.

[29] X. Tan, Y. Zhang, J. Lu, X. Xiong, Z. Liu, M. Yang. "Syzdirect:
Directed greybox fuzzing for linux kernel" In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications
Security (pp. 1630-1644), Nov 2023.

https://www.mongodb.com/docs/
https://www.nvidia.com/en-us/drivers/unix
https://portal.linuxtesting.ru/LVCFuzzingMethod.html
https://portal.linuxtesting.ru/about-linux-kernel.html
https://lwn.net/Articles/677764
https://nvd.nist.gov/vuln/detail/CVE-2016-9555
https://nvd.nist.gov/vuln/detail/CVE-2022-1055
https://nvd.nist.gov/vuln/detail/CVE-2022-0850
https://nvd.nist.gov/vuln/detail/CVE-2022-48502
https://nvd.nist.gov/vuln/detail/CVE-2023-2124

	I. Introduction
	II. Contemporary Challenges in Linux Kernel Fuzzing in Russia
	III. Fuzzing OS Kernel with External Kernel Modules
	IV. Review of Existing Solutions
	V. Proposed Solution
	VI. Implementation
	A. Backend Implementation
	B. Frontend Implementation

	VII. Conclusion and future work
	References

