
Optimization of multiplication in the RISC-V
architecture using bitmanip extension

Alexander Lekomtsev
Software Engineering Chair

St. Petersburg State University
St. Petersburg, Russia
a.lekomtsev@spbu.ru

Kirill Smirnov
Information Analytical Systems Chair

St. Petersburg State University
St. Petersburg, Russia
k.k.smirnov@spbu.ru

Abstract—RISC-V is an open architecture that is gaining popu-
larity in academia as well as in industry. The basic instruction set
itself is very limited, and additional functionality is implemented
in extensions, some of them are included in the standard. The
most common bit manipulation instructions are organized in a
dedicated bitmanip extension. Bit operations are actively used to
optimize arithmetic operations, in particular for multiplication
by a constant. For example, on the x86 architecture, one can use
the lea and logical shift instead of expensive mul instruction. In
this paper, the authors investigate all possible optimizations for
the multiplication operation using shXadd instructions from the
bitmanip extension.

Index Terms—RISC-V, Bitmanip, Multiplication, Clang, Com-
pilers, Compiler Optimization

I. INTRODUCTION

RISC-V is an open architecture that is actively gaining
popularity both in academia and in industry [1]. RISC-V ISA
has a modular design: the base instruction set is extremely
small, and almost all general-purpose instructions are orga-
nized in extensions, both standard and non-standard. This
modularity makes the architecture highly extensible, hardware
manufacturers need to support only the base set, and the
implementation of additional instructions is optional.

A dedicated extension is designed for the most common bit
manipulations. The bitmanip extension is a set of bit and byte
manipulation instructions aimed at improving performance,
reducing assembly code size and power consumption. Since
this extension is relatively new [2], compilers do not always
use these instructions efficiently while generating an assem-
bly code. For example, a recent study shows that both gcc
and clang do not recognize code patterns for most bitmanip
instructions [3].

It is well known that a shift and add instructions are
faster than an integer multiplication instruction for almost all
conventional microarchitectures. For example, core i7 spends
1 cycle for an integer addition and 3 cycles for an integer
multiplication. Sometimes the multiplication by a constant can
be replaced by a faster sequence of shifts and additions. Back
in the IBM/360 and x86 architectures, the LEA (load effec-
tive address) instruction was designed to generate a memory
address while accessing an array member. Later, it became
clear that this instruction could replace multiplication in some
cases. For example, multiplication by 5 on x86 architecture

can be written as follows: lea eax, [eax*4 + eax]. Modern
compilers know this pattern well and apply this transformation
for faster code. RISC-V provides similar instructions that
combine shift and addition, namely, sh1add, sh2add, sh3add.
In this paper, we refer to any of them as shNadd. On some
microarchitectures, a sequence of three shNadd is faster than
multiplication. Moreover, if a multiplication instruction is split
into several shNadd, a compiler can reuse their results in a
series of number-crunching operation.

Inverse transformation — folding a sequence of shifts to a
single mul instruction — is also used by compilers to generate
code optimized for size.

In this paper, we study all possible transformations from
multiplication by constant to a series of shXadd for RISC-V
ISA.

II. BACKGROUND

Strictly speaking, bitmanip is not a single extension, but a
collection of extensions, all related to bit manipulation [4].
Since there are lots of various manipulations, they are split
into several groups: for address generation (zba), basic bit ma-
nipulation (zbb), carry-less multiplication (zbc) and single-bit
instructions (zbs). In this paper, we consider sh1add, sh2add,
sh3add instructions only. The semantics of the instruction
“shNadd A B C” is as follows: calculate “(B << N) + C” and
write the result into register A (Fig. 1). These instructions are
most useful for address calculations when accessing arrays of
16-bit, 32-bit, or 64-bit elements. Also, the shNadd instruction
can be used to replace multiplication in some cases. For
example, to multiply a0 by 243, the straightforward way is:
“li a5, 243; mulw a0, a5, a0”. Please note that RISC-V lacks
“multiply by immediate” instruction, so the constant must be
placed into a register beforehand. It is possible to rewrite it
as:

sh1add a0, a0, a0
sh3add a0, a0, a0
sh3add a0, a0, a0

The first instruction can be rewritten to a0 = (a0 << 1) +
a0; which is equivalent to multiplying a0 by 3. The second
and third instructions are all the same as a0 = (a0 << 3)+a0;
which is multiplication by 9. The first instruction multiplies by

3, the second and third by 9, and the entire sequence multiplies
by 243.

Fig. 1. sh1add instruction specification.

III. RELATED WORK

Bit manipulation is a technique that aims to optimize
operations. For example, using bit manipulations one can
optimally check whether a number is a power of two, find the
nearest power of two, count the number of leading zeros. In
most processors, bitwise operations are performed in one clock
cycle, which is often faster than multiplication or division.

One frequent application of bit manipulation is multiplica-
tion and division using bit shifts. With a left or right bit shift,
you can multiply or divide by a power of two. For example,
the x86 architecture has a “shl” instruction for this, ARM has
a “slsl” instruction, and RISC-V has a “slli” instruction.

Operations combining bit shifts and addition are also used to
optimize multiplication. Ways to use this kind of optimization
vary from architecture to architecture. Multiplication by 5 can
be written with different instructions on different architectures,
but with the same idea: x ∗ 5 = (x << 2) + x. In x86 this is
done with lea (lea eax, [rdi + 4*rdi]), ARM uses an addition
instruction along with a bit shift (add r0, r0, r0, r0, lsl #2),
and RISC-V has its own combining instructions (sh2add a0,
a0, a0).

The idea of optimization using shNadd instructions has
already been used in compilers. For example, the Clang 18.1.0
compiler can generate a sequence of two instructions while
processing multiplication by some constants (11, 13, 19, 21,
25, 27, 37, 41, 45, 81), and GCC 13.2.0 could generate
sequences of three and four instructions:

sh2add a5, a0, a0
sh2add a5, a5, a5
sh2add a5, a5, a0
sh1add a0, a5, a0

to multiply value in register a0 by 203 [5].

IV. METHOD

The main task is to find all values, multiplication by which
can be rewritten as a sequence of three shNadd instructions.
The proposed solution is quite straightforward: let’s enumerate
all possible combinations of three shNadd instructions, calcu-
late the result, and if the result is a multiplication by a constant,

collect the constant and the sequence of shNadd. To enumerate
all combinations efficiently, the following notation and pattern
were introduced:

• a0 — the receiver register, initially it will hold the
value we want to multiply by something, the result of
multiplication will be added to it;

• a1 — auxiliary register for storing intermediate calcula-
tions;

• a? — a register that can hold either a0 or a1;
• shXadd, shYadd, shZadd — any instruction of the set

[sh1add, sh2add, sh3add].
All possible non-degenerate sequences of three instructions

can be written using this pattern:

shXadd ? a0 a0
shYadd ? ? ?
shZadd a0 ? ?

We can safely ignore the case of using the register a2
because it can occur for the first time only in the second line,
and a1 must have been used already (otherwise nothing is
stored in a1 and you can use it instead of a2). Also, the third
instruction must have both a1 and a2 registers (otherwise we
could skip the line where the value is written to this register),
but a0 is not used, so the value written to a2 can be written
to it.

For example, the sequence

sh3add a1 a0 a0
sh3add a2 a1 a0
sh3add a0 a1 a2

can be replaced by

sh3add a1 a0 a0
sh3add a0 a1 a0
sh3add a0 a1 a0

The results are the same, but the latter uses only two
registers.

Moreover, you can get a total of 1728 values (27 value
variants (X,Y,Z) and 64 case variants in place of a?), but not
all of them are meaningful:

shXadd a1, a0, a0
shYadd a0, a0, a0
shZadd a0, a1, a1

The expression above can be replaced with:

shXadd a0, a0, a0
shZadd a0, a0, a0

The enumeration of all values was realized step by step: first,
all possible substitutions a0 and a1 are enumerated in place
of a? (partial application of the pattern), then X, Y, Z are
substituted.

After the first step of the enumeration, we can obtain an
expression with three variables (X, Y, Z) that describe the
possible values of the partially-applied pattern. For example,
the following sequence of instructions:

shXadd a1 a0 a0
shYadd a1 a0 a1
shZadd a0 a0 a1

corresponds to the expression t∗ (2Z)+ t∗ ((2Y)+(2X +1)),
where t is the initial value of a0. Next, values from one to three
are substituted in place of Z, Y, X and the possible values for
multiplication are obtained.

The last thing to check is an unsigned integer overflow
case. If a multiplication instruction overflows, the sequence of
shNadd must overflow exactly the same way. Single shift in-
struction and single add instruction handle this case correctly,
the shNadd instruction is also correct. Thus, the sequence of
shNadd instructions overflows correctly.

V. IMPLEMENTATION

LLVM uses a dedicated DSL (Domain-Specific Language)
and a utility, both called TableGen, to describe platform-
dependent optimizations [6]. The code is first written in
a declarative style, then processed by the utility. TableGen
allows you to describe target platforms and templates to
code-generate instructions for a given architecture. Bitmanip
Zba extension instructions are described in a separate file;
multiplication with two shNadd instructions was described
earlier in this file.

With TableGen, you can specify the operation to be
optimized and the instructions to generate. For example,
the optimization of multiplication by 11 can be written as
follows:
def : Pat<(mul_const_oneuse GPR:$r,
(XLenVT 11)), (SH1ADD (SH2ADD GPR:$r,
GPR:$r), GPR:$r)>;

LLVM optimizer uses this TableGen code to generate an
assembler code like this:

sh2add a1, a0, a0
sh1add a0, a1, a0

In this paper, we need to perform the inverse transformation:
we have a sequence of shNadd instructions and our goal is
to generate a TableGen expression. To solve this problem,
we decided to employ a C preprocessor. For each piece of
assembler code, we generate a series of C macros and pass
them to cpp. For example, for the following assembler code:

shXadd a1 a0 a0
shYadd a0 a1 a0
shZadd a0 a1 a0

we generate C code presented in Listing 1.
C preprocessor performs all necessary substitutions for us,

and the result is a valid TableGen expression:
(SHZADD (SHYADD GPR:$r, GPR:$r), (SHXADD

(SHYADD GPR:$r, GPR:$r), GPR:$r))

VI. EXPERIMENT

Comparisons of multiplication execution times before
adding optimization and after were performed on a VisionFive
2 single-board computer with the following specifications:

• 1GHz RISC-V SiFive U74 processor;
• 4GB RAM.
The executable was compiled with the flags -static -

march=rv64 gc zba -O2. Google Benchmark version 1.8.3-
7736df03049c was used to measure code execution time [8].

The benchmark code is presented in Listing 2. To min-
imize branching instructions interference with our number-
crunching, our instructions are repeated 128 times in each
cycle. explicit_mul function measures execution time
of pure multiplication, and fast_mul measures bitmanip
instructions [9].

The test results are presented in the Table I. We can
conclude that the difference between three shNadd instructions
and multiplication instruction is statistically insignificant on
the current board.

TABLE I
COMPARISION OF EXPLICIT MULTIPLICATION AND BITMANIP FOR SINGLE

MULTIPLICATION

Benchmark Time CPU Iterations
explicit mul 2057±5ns 2053±5ns 340798
fast mul 2064±5ns 2057±5ns 340416

Another case in which optimization can be used is re-
using intermediate results in consecutive multiplications. An
example is presented in Listing 3. After each multiplication
is transformed into a series of shNadd instructions, compiler
can deduce that some of them are the same and optimize them
away.

After adding optimization in Clang and compiling this code
with the flags --target=riscv64 -march=rv64gc zba -S -O1,
we get 20 instructions of the shNadd type instead of the
expected 30 (10 multiplications, each of which is represented
by three instructions). The results of some calculations are
re-used, thus reducing their number.

Two versions of this code were compared, before and after
optimization [10]. The benchmark is presented in Listing 4,
the results are presented in Table II. To avoid interference with
memory load/store operations, they are commented out.

TABLE II
COMPARISION OF EXPLICIT MULTIPLICATION AND BITMANIP FOR SERIES

OF DIFFERENT MULTIPLICATIONS

Benchmark Time CPU Iterations
explicit mul 5129± 2 ns 5127± 2 ns 136512
shx 3591± 2 ns 3590± 2 ns 194974

VII. CONCLUSION

We enumerated every possible combination of three shNadd
instructions and obtained a list of constants that are folded into
these combinations. The entire mapping is implemented in our
publicly available fork of LLVM project [7].

The benchmark results show that although optimization does
not speed up the code at single multiplication, there is a
noticeable improvement for consecutive multiplications.

REFERENCES

[1] RISC-V International home page, URL: https://riscv.org/about/ (ac-
cessed: 07.04.2024).

[2] Bitmanip Extension in Public Review, URL: https://lists.riscv.org/g/tech-
announce/message/66 (accessed: 07.04.2024).

[3] Lekomtsev A. A., Sukrahev A. D, Tool for evaluating the quality of
instruction coverage by compilers for RISC-V architecture. Information
Technologies and Systems 2023, BSUIR, pp. 103-104

[4] Latest bitmanip specification, URL: https://github.com/riscv/riscv-
bitmanip/releases (accessed: 07.04.2024).

[5] Example of godbolt using a sequence of 4 bitmanip instructions, URL:
https://godbolt.org/z/fqzccMhh6 (accessed: 07.04.2024).

[6] LLVM TableGen manual, URL: https://llvm.org/docs/TableGen/ProgRef.html
(accessed: 07.04.2024).

[7] GitHub repository, URL: https://github.com/vacmannnn/llvm-
project/tree/RISCVMulOptimization (accessed: 07.04.2024).

[8] Google Benchmark, URL: https://github.com/google/benchmark (ac-
cessed: 07.04.2024).

[9] Benchmarks listing, URL: https://t.ly/Fir86 (accessed: 07.04.2024)
[10] Benchmarks listing, URL: https://t.ly/wbLek (accessed: 07.04.2024)

#define ex GPR:$r
#define gamma (SHYADD ex, ex)
#define beta (SHXADD gamma, ex)
#define alpha (SHZADD gamma, beta)
alpha

Listing 1. Code for preprocessor to generate TableGen code

#define X2(X) X X
#define X4(X) X2(X) X2(X)
#define X8(X) X4(X) X4(X)
#define X16(X) X8(X) X8(X)
#define X32(X) X16(X) X16(X)
#define X64(X) X32(X) X32(X)
#define X128(X) X64(X) X64(X)

#define XZ(X) { 128(X) }

static void explicit_mul(benchmark::State& state) {
int64_t a = 2;
for (auto _ : state)

XZ(asm volatile ("li %1,39\nmul %1,%1,%0" :
"=r"(a) : "r"(a));)

}

static void fast_mul(benchmark::State& state) {
int a = 2;
int b;
for (auto _ : state) {

XZ(asm volatile ("sh1add t0,%0,%0\n"
"sh2add %0,t0,t0\n"
"sh3add %1,t0,%0\n" : "=r" (b) :

"r" (a) : "t0");)
}

}

Listing 2. Testing the performance of two multiplication methods

int* mul(int *res, int *n) {
int x = *n;
res[0] = x * 23;
res[1] = x * 29;
res[2] = x * 35;
res[3] = x * 39;
res[4] = x * 43;
res[5] = x * 47;
res[6] = x * 49;
res[7] = x * 51;
res[8] = x * 53;
res[9] = x * 55;

return res;
}

int main() {
int test = 10;
int arr[10] = {};
mul(arr, &test);

}

Listing 3. Sequence of multiplications

#include <benchmark/benchmark.h>

#define xM1 \
asm volatile("li a1, 10" ::: "a1");\
asm volatile("li a2, 23" ::: "a2");\
asm volatile("mul a2, a1, a2" ::: "a1", "a2");\
asm volatile("#sw a2, 0(a0)");\
asm volatile("li a2, 29" ::: "a2");\
asm volatile("mul a2, a1, a2" ::: "a2");\
asm volatile("#sw a2, 4(a0)");\
asm volatile("li a2, 35" ::: "a2");\
asm volatile("mul a2, a1, a2" ::: "a2");\
asm volatile("#sw a2, 8(a0)");\
asm volatile("li a2, 39" ::: "a2");\
asm volatile("mul a2, a1, a2" ::: "a2");\
asm volatile("#sw a2, 12(a0)");\
asm volatile("li a2, 43" ::: "a2");\
asm volatile("mul a2, a1, a2" ::: "a2");\
asm volatile("#sw a2, 16(a0)");\
asm volatile("li a2, 47" ::: "a2");\
asm volatile("mul a2, a1, a2" ::: "a2");\
asm volatile("#sw a2, 20(a0)");\
asm volatile("li a2, 49" ::: "a2");\
asm volatile("mul a2, a1, a2" ::: "a2");\
asm volatile("#sw a2, 24(a0)");\
asm volatile("li a2, 51" ::: "a2");\
asm volatile("mul a2, a1, a2" ::: "a2");\
asm volatile("#sw a2, 28(a0)");\
asm volatile("li a2, 53" ::: "a2");\
asm volatile("mul a2, a1, a2" ::: "a2");\
asm volatile("#sw a2, 32(a0)");\
asm volatile("li a2, 55" ::: "a2");\
asm volatile("mul a1, a1, a2" ::: "a2");\
asm volatile("#sw a1, 36(a0)");

#define xM2 xM1 xM1
#define xM4 xM2 xM2
#define xM8 xM4 xM4
#define xM16 xM8 xM8
#define xM32 xM16 xM16
#define xM64 xM32 xM32
#define xM128 xM64 xM64
#define xM256 xM128 xM128

#define x1 \
asm volatile("li a1, 10" ::: "a1");\
asm volatile("sh2add a2, a1, a1" ::: "a2"); \
asm volatile("sh1add a3, a2, a1" ::: "a3");\
asm volatile("sh1add a3, a3, a1" ::: "a3");\
asm volatile("#sw a3, 0(a0)");\
asm volatile("sh1add a3, a1, a1" ::: "a3");\
asm volatile("sh1add a4, a3, a1" ::: "a4");\
asm volatile("sh2add a5, a4, a1" ::: "a5");\
asm volatile("#sw a5, 4(a0)");\
asm volatile("sh2add a4, a4, a4" ::: "a4");\
asm volatile("#sw a4, 8(a0)");\
asm volatile("sh3add a4, a1, a1" ::: "a4");\
asm volatile("sh1add a4, a4, a1" ::: "a4");\
asm volatile("sh1add a4, a4, a1" ::: "a4");\
asm volatile("#sw a4, 12(a0)");\
asm volatile("sh2add a4, a2, a1" ::: "a4");\
asm volatile("sh1add a5, a4, a1" ::: "a5");\
asm volatile("#sw a5, 16(a0)");\
asm volatile("sh1add a4, a4, a2" ::: "a4");\
asm volatile("#sw a4, 20(a0)");\
asm volatile("sh2add a4, a3, a1" ::: "a4");\
asm volatile("sh2add a5, a4, a3" ::: "a5");\
asm volatile("#sw a5, 24(a0)");\
asm volatile("sh2add a2, a2, a2" ::: "a2");\
asm volatile("sh1add a2, a2, a1" ::: "a2");\
asm volatile("#sw a2, 28(a0)");\

asm volatile("sh2add a2, a4, a1" ::: "a2");\
asm volatile("#sw a2, 32(a0)");\
asm volatile("sh3add a2, a3, a3" ::: "a2");\
asm volatile("sh1add a1, a2, a1" ::: "a1");\
asm volatile("#sw a1, 36(a0)");
#define x2 x1 x1
#define x4 x2 x2
#define x8 x4 x4
#define x16 x8 x8
#define x32 x16 x16
#define x64 x32 x32
#define x128 x64 x64
#define x256 x128 x128

static void shx(benchmark::State& state) {

for(auto _ : state) {
x256

}
}

static void explicit_mul(benchmark::State& state) {
int64_t a;

for (auto _ : state) {
xM256

}
}

Listing 4. Testing the performance of two sequence of multiplications

