
Tool for analysing BPU perfomance
Danil Slinchuk

Software Engineering Chair
St. Petersburg State University

St. Petersburg, Russia
ORCID: 0009-0002-8440-0433

Aleksei Efremov
Software Engineering Chair

St. Petersburg State University
St. Petersburg, Russia

ORCID: 0009-0004-5510-5923

Vladimir Kutuev
YADRO Lab

St. Petersburg State University
St. Petersburg, Russia

v.kutuev@spbu.ru

Abstract—When designing processors, one needs to compare
their individual components, such as the BPU (branch prediction
unit), with solutions on the market. This leads to the problem of
finding or generating specific test cases that perform differently
on various BPUs. These test cases serve as a starting point for
further analysis. To solve this problem, one can employ fuzzing,
testing method based on randomly generation input data. This
paper describes a tool that allows you to test and compare various
BPUs in practice. The tool generates a set of random tests, runs
them, collects counters from the CPU, and provides data for
analysis. Additionally, we have obtained results for several CPUs
and compiled the tests into a benchmark, which demonstrates the
differences between BPUs. All technical intricacies are described
and justified.

Index Terms—branch prediction unit, fuzzing, code generation,
microarchitecture analysis, CPU analysis, performance counters,
BPU comparison, Gem5, RISC-V.

I. INTRODUCTION

Since the emergence of computing technology, there has
always been a desire to increase the performance of pro-
gram execution. One of the important ways to speed up the
processor is the method of instruction pipelining [1], which
allows processing several instructions simultaneously, dividing
their execution into a series of sequential steps. However, its
efficiency is not always constant. For example, conditional
and unconditional branches can cause control hazards [2],
which leads to idling of processor components and reduces the
efficiency of the pipelining method to zero. A special module,
the branch prediction unit (BPU), is used to partially solve
this problem. BPU attempts branch prediction to reduce the
processor downtime during jumps.

BPU is a part of the processor’s microarchitecture. The
intricacies of its implementation and factors influencing its ef-
ficiency in most processor families of companies like Intel and
AMD are unknown to us, as their architecture implementations
are proprietary. At the same time, the open-source RISC-V
Instruction Set Architecture (ISA) is actively developing and
gaining popularity. So identifying scenarios where the BPU
in one processor shows significantly worse results than the
BPU in common modern CPUs can assist processor developers
in improving the BPU itself and developing the RISC-V
architecture through a detailed examination of such situations
[3]–[5]. To address this task, the development of a tool was
initiated.

Fuzzing is used to find scenarios that reveal differences
in the efficiency of different BPUs. The method is based on
repeatedly executing randomly generated code to find blocks
of instructions that reveal weaknesses of BPUs. It’s worth
mentioning that fuzzing is used specifically because there are
many different types of BPU with different internal devices
and that use different algorithms. Simple tests, for example,
to determine the size of the BTB (Branch Target Buffer) may
not be sufficient [6], [7], as modern BPU devices can be very
complex [8]. Fuzzing can also help reveal incorrect behavior
of BPU and bugs in its implementation, we implemented the
tool based on these ideas. Its execution proceeds in 3 main
stages:

• generate — random test generation in the C language;
• analyse — building, running tests and collecting data

from CPU counters containing information about BPU’s
operation;

• summarize — filtering and analysing the results, graphing
and saving the data.

The tool is available on GitHub [9].
The rest of the paper is organized as follows. Subsection

’Architecture’ demonstrates how the tool works and outlines
its main architecture. Subsection ’Test generation’ describes
code generation and the possible problems associated with it.
Subsection ’Data collection’ describes the methods used to
collect data from CPU counters, methods to improve repro-
ducibility, and some of the optimizations used. The Subsection
’Summarize results’ outlines the comparison metrics for the
BPU. Section ’Evaluation’ presents the results of comparing
the BPUs of several processors for each of the architectures:
RISC-V, x86, ARM64 obtained using our tool, along with
the conclusions drawn from these results. In Section ’Future
work’, we discuss ways to develop the tool and its possible
improvements.

II. BACKGROUND

There are several well-known types of BPUs that differ in
their operating principles and efficiency [10]. All BPUs can
be divided into two groups: static and dynamic. Static branch
prediction is the simplest technique as it only uses information
about the branch instruction and does not rely on the dynamic
code execution history. However, it has been widely used in
practice: the early implementations of MIPS and SPARC (the
first commercial RISC architectures) employed this technique.



Dynamic branch prediction utilizes information about taken or
untaken branches collected during execution to predict branch
outcomes. There are quite a few subtypes of this technique and
they all demonstrate varying effectiveness. Examples include:

• 1-bit saturating counter;
• 2-bit saturating counter;
• correlating branch prediction buffer;
• tournament branch predictor;
• branch target buffer;
• return address predictors;
• integrated instruction fetch units;
• next-line prediction;
• local branch prediction;
• global branch prediction.

It is known that the major processor manufacturers (Intel and
AMD) have used some well-known branch prediction tech-
niques. For example, the non-MMX Intel Pentium processor
used a saturating counter; The Intel Pentium MMX, Pentium
II, and Pentium III had local branch predictors; Pentium
M, Core, Core 2, and Silvermont-based Atom processors
employed global branch prediction. However, when it comes
to modern flagship processors we do not know the specific
BPU implementations, so comparing them can only be done
through thorough testing.

It is worth noting that the BPU is a microarchitectural
component that affects not only the system’s overall perfor-
mance but also its security. The widely known Spectre [11]
security vulnerability is based on branch prediction and the
use of the BPU. Speculative execution resulting from a branch
misprediction may leave observable side effects that may
reveal private data to attackers. The most recent vulnerability
of this type, Spectre-HD, was discovered in February 2023,
also known as ”Spectre v6” or ”Spectre SRV”.

III. RELATED WORKS

Different BPU implementations demonstrate different effec-
tiveness [3]–[6] as there are numerous types and implementa-
tions. Due to the inability to directly compare several BPUs,
the fuzzing method is utilized in the tool as it has been widely
used for testing other hardware components [12]. A search was
conducted for tools capable of comparing BPUs and below are
several projects addressing similar tasks. However, no direct
alternatives to our tool were found.

A. Overview of alternatives

AFL-fuzz-compiler [13] is a specialized AFL version de-
signed for fuzzing compilers. However, since it was not orig-
inally intended as a means to optimize system performance,
its results may be uninformative for the task at hand. For the
same reason, it is unable to conduct measurements and provide
conclusions reflecting the actual system performance.

Coremark [14] is a portable test suite developed to mea-
sure processor performance. After compilation and execution,
Coremark provides an estimate of the processor performance.
However, it is important to consider that the tests included
in Coremark are aimed at evaluating the entire processor

microarchitecture, so it is not possible to extract results that
solely apply to the BPU. It is also worth noting that the tests
are pre-created, and their quantity is limited.

Championship Branch Prediction [15], [16] (CBP) compe-
titions for developing BPU models were last held in 2016.
To evaluate the models presented by competition participants,
a special test suite was used, consisting of pre-recorded
execution traces of various programs, primarily consisting
of branch instruction sequences. These traces have a unique
format, which complicates their application outside of the
testing system, including attempts to assess real processors’
performance with their help.

B. Overview of ways of obtaining counters

Analysis of methods for obtaining data from the BPU was
also carried out since there are several different options.

Perf [17] is a kernel-based profiler for Linux that collects
data on program performance by reading hardware and soft-
ware counters or tracing it during execution. Hardware counter
readings are obtained through a specific kernel module.

OProfile [18] is a performance analysis tool for Linux that
utilizes built-in performance monitoring capabilities provided
by the processor to gather information on kernel operation,
executed modules, and running programs.

Cachegrind [19] is a utility included in the performance pro-
filing toolset Valgrind. It simulates program operation with the
processor’s cache memory and branch prediction, providing
approximate values of various program performance-related
parameters.

Gem5 [20] is a processor simulator where you can prototype
your processor, including its individual components such as the
BPU. You can then run and analyse this model within Gem5
before creating a physical copy of the processor. As it is a
simulator, it provides a wide range of diverse and reproducible
data and traces, which are typically not guaranteed on an actual
processor.

C. Review results

Initially, the option of using Cachegrind to study BPU
performance was considered. However, it was found that
Cachegrind is not the optimal choice as it can only simulate
BPU operation and provide data based on simulation. There-
fore, the metrics obtained using Cachegrind may significantly
differ from real data. Even the creators of this tool acknowl-
edge this fact and suggest using Perf for more accurate results.

During the review of the toolset, an analysis was also
conducted on the possibility of using Perf and OProfiler. Both
tools were found to be very similar to each other and for
the tasks at hand they use the same kernel module. As these
tools only allow collecting processor counters from the entire
process execution and require installation, the decision was
made to directly use kernel system calls that they utilize
instead.

Finally, to enable data retrieval from the simulated processor
model, it was decided to implement support for the powerful
processor simulator — Gem5. This tool provides the ability



to prototype the BPU and study its operation, allowing for in-
depth analysis and development of this processor component
before its physical implementation.

As a result, the decision was made to choose the Linux
kernel system calls and Gem5 for BPU metric measurements
based on the considerations outlined above.

IV. IMPLEMENTATION

In this section, we describe the capabilities of the tool as
of April 1.

A. Architecture

The tool consists of three main stages:
• generate — test generation;
• analyse — running the tests and collecting CPU counters;
• summarize — creating graphs and summary tables.

To use the tool, a CLI was developed, allowing each stage
to be executed separately, as well as an aggregate driver that
connects all stages for sequential execution. Additionally, the
driver allows the stage analyse to be executed multiple times
to obtain data from different BPUs on the same set of tests.
Thus, users can access each component separately to achieve
their goals, for example running custom tests, and the tool is
easy to extend.

B. Test generation

In the generate stage tests are created. The generation
starts with the randomized construction of an abstract syntax
tree (AST) that includes constructs creating a load on the
BPU: loops and branching, as well as various calculations to
modify branching conditions. The constructed AST is then
transformed into C code to be compiled for a wide range of
architectures and written to the test file. Test generation should
be randomized, yet controlled. For example, to prevent the
generation of infinite loops (which make tests uninformative),
the use of variables in loop declaration and within its body
can be limited. Additionally, in the current generation process,
it is possible to adjust the probability of the appearance of
particular constructs in a test, the maximum nesting depth,
and the number of constructs at each level.

C. Data collection

In the analyse stage, the tool runs tests and collects data
on the BPU’s performance. The tool can do this in two
different ways: using the Linux kernel and the Gem5 processor
simulator. Let’s delve deeper into the former method. Before
running the test, the tool wraps it with special functions. These
functions utilize system calls and isolate the area under test.
Various methods are employed in the analysis to enhance
the accuracy and repeatability of testing results. To minimize
the probability of test execution being preempted, the tool
binds the test process to a core, increases its priority, and
uses a FIFO scheduler. To ensure more reliable data, the
tool gathers information only from the section of the code
under test, excluding the code related to process initialization,
runs tests multiple times, and subtracts the values spent on

setting up the test environment from the final test results. This
approach allows the user to avoid the necessity of manually
configuring the system environment and conducting numerous
measurements to obtain reliable data.

In addition to obtaining data from a real processor, the tool
also supports collecting information from the Gem5 proces-
sor simulator. In Gem5 the user can model their processor,
including its individual components such as the BPU. Thus,
a processor developer may not need to create a new physical
processor but can analyse and test a new BPU model for their
central processor using the simulation model in Gem5. This
provides developers with a convenient and efficient way to
verify and refine models of new processor components before
their implementation.

The tool can also run tests on remote setups using SSH with
machines operating in parallel to reduce testing time. It can be
useful when testing multiple processors or individual setups.

D. Summarize results

The metric chosen to compare BPUs is the percentage of
mispredicted branches. The lower this percentage, the better
the BPU performed on that test. After collecting data from all
tests the tool calculates this metric for each test and its average
for each tested BPU. Then a graph is plotted representing
the BPU’s performance across all tests which helps easily
identify interesting and anomalous tests and draw conclusions
on which of the BPUs, on average, shows better results. At the
end of the summarize stage the tool saves all the calculated
data for each BPU.

Thus, after using the tool the user receives a set of generated
tests, data on the BPU’s performance for each test and a graph
for quick analysis.

V. EVALUATION

In this section we will discuss the results obtained using
the tool in practice. In total, 10 devices with 3 different
architectures were tested.

• x86:
– AMD Ryzen 7 4700;
– AMD Ryzen 9 7900X;
– AMD Ryzen Threadripper 2970WX;
– 11th Gen Intel Core i5-1135G7;
– Intel Core i7-6700;
– Intel Core i5-8250U.

• ARM64:
– Raspberry Pi: Broadcom BCM2711 Cortex-A72

(ARM v8) 64-bit;
– Odroid: Samsung Exynos5 Octa ARM Cortex-A15

2GHz and Cortex-A7 1.3GHz.
• RISC-V:

– VisionFive 2: StarFive RISC-V JH7110;
– LicheePi 4A: TH1520 RISC-V C910.

The devices were divided into two groups: low-end and high-
end. The first group included all devices with ARM and RISC-
V architectures while the second group included x86. Several



hundred tests were generated for each architecture and indica-
tive and anomalous tests within each group were combined
into benchmarks. The results for each group are presented in
Fig. 1 and Fig. 2. Assessing the accuracy of the measurement
method is problematic, as it can vary greatly from processor
to processor. Thus, after 10 runs of our benchmark with the
following parameters: ”timeout”: 10, ”max test launches”: 50.
For AMD Ryzen 7 4700 and StarFive processors, the average
value of the standard error for all tests was 0.04% and 0.21%,
respectively, and the maximum value of the standard error
reached 1.6% and 7.6%, respectively, which shows a difference
in errors of about 5 times. This is justified by the fact
that different processors contain different BPU performance
counters: there may be no counter for the total number of
branches, but instead there will be a counter for correctly
predicted branches, and accordingly, each counter will have
its own error. It is worth noting that only indicative tests are
represented on the graphs allowing for a comprehensive view.
The X-axis shows the generated tests and the Y-axis represents
the misprediction rate for a specific BPU. All tests are sorted
by increasing maximum of misprediction rate. Let’s take a
closer look at each of the graphs.

A. low-end

The Fig. 1 shows that on tests with the lowest misprediction
rates the BPUs show fairly similar results. However, further
on LicheePi and Odroid become outsiders and show worse
results. There are also anomalous tests such as test_71 and
test_63 where Raspberry’s BPU shows a high misprediction
rate.

B. high-end

As can be seen from the Fig. 2 the average misprediction
rate compared to low-end has significantly decreased, with a
maximum misprediction rate of about 16 while for low-end
this value is around 35. It is also worth noting that for tests
with misprediction rates less than two the outsiders are Intel
Core i5-1135G7 and AMD Ryzen Threadripper 2970WX.

C. Results for Gem5

In addition to comparing BPUs on real processors, an
analysis of various BPUs configured in gem5 was conducted:

• BiModeBP;
• LTAGE;
• LocalBP;
• MultiperspectivePerceptron64KB;
• MultiperspectivePerceptron8KB;
• MultiperspectivePerceptronTAGE64KB;
• MultiperspectivePerceptronTAGE8KB;
• TAGE;
• TAGE SC L 64KB;
• TournamentBP.

The test results are presented in Fig. 3, which shows that Bi-
ModeBP and MultiperspectivePerceptronTAGE64KB perform
poorly in most tests, although this is not always the case. It is
worth noting that a detailed analysis of each test can provide

valuable information about the BPU during the development of
a new processor and contribute to improving its architecture.
The presented benchmark and test results are available in the
repository [21] for open analysis by anyone interested.

VI. FUTURE WORK

The further development of the project includes plans to
extend test generation, making it more targeted on BPU and
dependent on test results for better generation of informative
tests. Also there are plans to support Android devices, possibly
using adb to expand the statistics. Testing results for a greater
number of processors are also planned.

VII. CONCLUSION

A tool using the fuzzing method for comparing BPUs has
been implemented. It generates tests that utilize BPUs and
collects CPU counters about their operation for analysis. With
this tool results were obtained for multiple architectures and
a benchmark of generated tests was created. This benchmark
contains tests that we consider relevant for comparing BPUs,
as they show similar results for several BPUs in our testing.
The benchmark is publicly available and can provide valuable
insights for CPUs developers and researchers worldwide.
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Fig. 1. Results for low-end
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Fig. 2. Results for high-end
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Fig. 3. Results for gem5


