DOI: 10.15514/ISPRAS-2019-1(2)-1 t@-ﬂ

Design methods for privacy-preserving neural networks

1 Maria A. Lapina, ORCID: 0000-0001-8117-9142 <mlapina@ncfu.ru>
INikita Fisenko ORCID 0009-0003-7313-9580< mr.niksemen-05@yandex.ru >
'Egor Shiriaev, ORCID: 0000-0002-2359-1291 <ea_or@list.ru>
25 Neelakandan, ORCID: 0000-0001-8583-0019, <drsneelakandan@ieee.org >

! North Caucasus Federal University,
1, Pushkina st., Stavropol, 355017, Russia
2RMK Engineering College affiliated to Anna University,
RSM Nagar, Gummidipoondi Taluk, Kavaraipettai, Tamil Nadu 601206, India

Abstract. The paper presents methods of designing neural networks focused on ensuring data privacy. The research conducted by a team of authors
from the North Caucasus Federal University focuses on the integration of homomorphic encryption into the architecture of convolutional neural networks.
The main goal of the research is to develop efficient data processing techniques that preserve privacy at all stages of learning and inference. The work
considers the application of standard convolutional neural network architectures to image classification tasks, followed by the integration of
homomorphic encryption using the TenSEAL library. Special attention is paid to the approximation of activation functions, which is a key aspect for
compatibility with homomorphic encryption and data privacy. The results demonstrate the potential of adapting neural networks to handle encrypted
data, highlighting the importance of further research to optimize the performance and security of the models. This work represents a significant
contribution to the development of machine learning methods with privacy and data security in mind.

Keywords: neural networks, homomorphic encryption, data privacy, convolutional neural networks, approximation of activation functions.

For citation: Lapina Maria Fisenko Nikita, Shiriaev Egor, S Neelakandan Design methods for privacy-preserving neural networks. Trudy ISP RAN/Proc.
ISP RAS, vol. 1, issue 2, 2019. pp. 15-19 (in Russian). DOI: 10.15514/ISPRAS-2019-1(2)-1

Acknowledgements. This work was supported by the Russian Science Foundation 19-71-10033, https://rscf.ru/project/19-71-10033/

1. Introduction

In recent years, the field of machine learning and artificial intelligence has seen a significant increase in interest in the development and
application of neural networks, especially in tasks that require processing large amounts of data [1]. These advanced technologies find
applications in various fields, including automated image analysis and the development of complex decision-making systems. However,
as their use grows, the need to ensure the security and confidentiality of the processed information increases. This is especially relevant
in the context of the tightening of legislation in the field of personal data protection in Russia in connection with the adoption of the
Federal Law "On Personal Data" No. 152-FZ, aimed at strengthening control over the processing and dissemination of personal
information of citizens [2]. In this context, one of the promising directions in the field of neural network design is the development of
methods capable of ensuring data confidentiality at all stages of data processing [3]. To increase the level of information protection, the
use of homomorphic encryption is proposed. This approach allows data to be processed in such a way that it remains encrypted throughout
the learning process, thus providing a balance between extracting valuable information and preserving its confidentiality [4]. The basic
principles and methodologies for designing neural networks that consider data privacy requirements, including techniques, advantages,
and limitations, will be reviewed, and practical examples of their application will be discussed. The aim of this study is to provide a
comprehensive overview of existing approaches and identify promising directions for further research in this area.

2. Privacy-preserving neural networks

2.1. General approaches

Homomorphic encryption is an encryption method that allows one to perform computations on encrypted data without requiring
decryption [5]. The results of these computations remain in encrypted form and once decrypted, are identical to the results of operations
on the data in plaintext [5]. This encryption approach can be used to provide privacy in outsourcing data storage and processing, allowing
encrypted data to be transferred to commercial cloud environments for further processing, keeping it encrypted [6]. Homomorphic
encryption is a sophisticated approach for processing encrypted data that allows various computational operations to be performed on it
without prior decryption [7]. This method includes different encryption schemes, each of which has a unique ability to process the data
while keeping it encrypted. The computational operations can be represented in the form of Boolean or arithmetic operations, which gives
this technology flexibility in application. Depending on the level of support for different operations, there is a classification of
homomorphic encryption schemes. First, note partially homomorphic encryption, which is limited to performing only one type of
operation (e.g., only addition or only multiplication). Then we consider schemes that are restricted but still homomorphic to some extent:
they are capable of handling operations of two types, but with constraints on the complexity of the computational circuits. Next, we
consider level-complete homomorphic encryption, which allows arbitrary computational operations with limited depth. This ensures that
more complex data processing algorithms can be realized. Finally, Fully Homomorphic Encryption (FHE) is considered, which provides
the ability to perform an unlimited number of operations of different types on encrypted data. It is FHE that is the most powerful tool in
the field of information security [8].

Within the framework of neural network development, the application of the CKKS (Cheon-Kim-Kim-Song) homomorphic encryption
method, which belongs to the fourth generation of homomorphic ciphers, is due to several key advantages that make this approach

mailto:ea_or@list.ru

particularly relevant for data processing in the context of machine learning [9]. The CKKS scheme, designed to work efficiently with real
and complex numbers, provides a high degree of accuracy in computations over encrypted data, which is critical for achieving adequate
results in deep learning tasks, given that the data and weights of the neural network are often real numbers [10]. One of the significant
advantages of CKKS is its ability to process encrypted data using approximate computations, which can optimize performance and reduce
the number of computational resources required to process complex neural network models while maintaining an acceptable level of
accuracy [11]. In addition, CKKS can efficiently scale computational results through the inclusion of a scaling operation, which allows
controlling the growth of errors during repeated arithmetic operations on encrypted data and provides the ability to perform complex
computational procedures without significant loss of accuracy [12]. The use of CKKS in neural networks is also motivated by its high
degree of security and its ability to ensure data confidentiality during processing, which is critical in applications that require the protection
of sensitive information, such as medical or financial applications [13]. Thus, the choice of CKKS as a homomorphic encryption method
for use in neural networks is motivated by its unique combination of accuracy, efficiency, and security, making it an ideal tool for solving
machine learning problems where these aspects are key to successful implementation.

The research has considered the principle of convolutional neural network design focused on data privacy preservation. The research
starts with local data processing using the MNIST dataset, which is downloaded and processed locally [13]. This reduces the risks
associated with data leakage as the data is not transmitted across the network and is not stored on external servers. The study employs a
standard convolutional neural network architecture for image processing, which provides training efficiency and sufficient accuracy for
image classification tasks.

The study focuses on the integration of homomorphic encryption using the TenSEAL library [14]. This allows encrypted computation
while providing a high level of data privacy protection [15]. An encrypted version of the neural network model is implemented, which is
able to perform inference on encrypted data, allowing the model to make predictions without revealing the contents of the data [16].
The study also establishes encryption parameters, including global scale and polynomial modulus sizes, to control the balance between
encryption accuracy and security [17]. In addition, the Galois key generation process provides the necessary infrastructure to perform
operations on encrypted data [18].

The presented approach demonstrates the possibility of combining traditional machine learning techniques with advanced encryption
technologies to create systems capable of processing data while preserving its confidentiality. This is especially relevant for areas where
sensitive data such as medical images or financial information needs to be processed.

2.2. Secure matrix multiplication

Computation of homomorphic matrices is a fundamental operation for privacy-preserving machine learning. One of the many algorithms
for multiplying homomorphic matrices, Halevy and Shoup's algorithm is based on a sequence of matrix-to-vector multiplications that are
encoded as plaintext. (see the original, maybe add something from there in the form of water). In matrix-vector multiplication, the input
matrices are encoded in their diagonal representation.

Let a matrix A of size m x m will be represented in the form ay, ..., ap, -1, Where a; = (Ao, A1 i41, 1 Am—1m+1)-
There are two paths to follow. The first is a vector of weights in unencrypted form, which will be computed using the algorithm described below.
First, a;[j1 = A;j+1. Next product w = vA, where v = {v,, vy, ..., v,,_1 } — input vector can be calculated as

vO = xO{aOY Aqy .. ,an_]_}
v = xl{an—lv A, ... lan—Z}
Up-1 = xn—l{alv Az, Ap—1, aO}

This method requires m rotation, multiplication, and addition.

In case the vector of weights will be represented in encrypted form, the multiplication of two encrypted matrices is performed by the
second way, the description of the algorithm of which is presented below:

The multiplication of a matrix by a vector can be represented by combining the operations of rotation and multiplication by a constant
Let a matrix A of size m x m will be presented in encrypted form Bune y_, ..., Ym—1, Where a; = (Ao i, A1 i41, - Am—1m+1)-

First and foremost, y;[j1 = A; ;.. Thenthere is a piecewise product between the vector of weights and the matrix, the product of the w = vA4,
where v = {v,, vy, ..., U,_1 } — input vector can be calculated as

vy = {Xo, X1, s X0 13O0, V11 oo Vo1t = { X0Yo, X1 V10 oo s Xno1Vn—1}
v = {xn_1, %01 s Xn 2 YOWn-1. Y01 - Y2} = { Xn-1Vn-1, X0Y0: -+ Xn—2Yn—2}

Vpo1 = {x1, %2, 0 X1, X0 3O1, V2 o V-1, Yot = { Y1, X220 - Xnm1Vn-1, XoYo by
where ® - component product between vectors.

2.3. Approximation of activation functions and their realization in a homomaorphic cipher

The research on the design of encrypted neural networks focuses on adapting activation functions to work with homomorphic encryption
[19]. Homomorphic encryption, characterized by its ability to perform computations on encrypted data, is a powerful tool to ensure data
privacy during data processing [20]. However, its application in the context of neural networks faces some difficulties, especially in the
implementation of nonlinear activation functions, which are critical for the training efficiency of deep learning models [21].

In the current research, work has been done to adapt neural networks for processing encrypted data using homomorphic encryption. The
basis for this was the TenSEAL library designed for homomorphic encryption, which allows to perform computations on encrypted data
while ensuring its confidentiality. An important part of the research was the development of an encrypted version of the neural network
represented by a class. This class copies the weights and biases from the trained model and uses them to create an encrypted model
capable of handling encrypted data.

The sigmoid activation function, also known as the logistic sigmoid, is one of the most widely used activation functions in the field of
neural networks, especially in the context of binary classification and logistic regression. This function takes a real number as input and
compresses it between 0 and 1, making it ideal for tasks where it is necessary to predict a probability belonging to a certain class.

1
l+e>*

o(x) =

where X - input value, e — base of the natural logarithm

The sigmoidal activation function, due to its unique characteristics, plays a significant role in the field of machine learning, especially in
the context of neural networks. One of the key features of the sigmoid function is its smoothness and differentiability [22]. These
properties make it ideally suited for use in gradient descent and error back propagation algorithms, which ensures efficient updating of
weights during neural network training. Transforming the input values by a sigmoid function into a range from 0 to 1 allows the outputs
to be interpreted as probabilities. Thus, a value close to 1 indicates a high probability of belonging to a certain class, while a value close
to O indicates a low probability. This feature makes the sigmoid function particularly useful in binary classification tasks. Introducing
nonlinearity using the sigmoidal activation function allows neural networks to model complex and nonlinear relationships between input
and output data. Without nonlinearity, neural networks would be limited to linear operations and would not be able to approximate a wide
range of functions or solve problems requiring generalization of nonlinear relationships. However, the sigmoid function is not symmetric
about the origin, which can lead to a bias in the gradients during the learning process. This bias can have an impact on the speed and
stability of convergence of training, since the gradients propagated back through the network may not be optimally distributed, which in
turn affects the process of updating the weights.

The key to adapting neural networks to handle homomaorphic encryption is the approximation of activation functions. In this study, a
quadratic activation function was used; being polynomial, it adapts more easily to the constraints of homomaorphic encryption, unlike
traditional activation functions such as ReL U or sigmoid [22]. This allowed the encrypted model to perform inference on encrypted data
while retaining learning and classification ability [23]. Additionally, the study tuned the encryption parameters, including global scale
and modulus sizes of the polynomials, which is a key element to customize the homomorphic encryption process [24].

The study confirms the feasibility of adapting neural networks to handle encrypted data using homomorphic encryption and activation
function approximation [25]. However, further research is needed to optimize the balance between security, privacy, and model
performance, considering the impact of activation function approximation on accuracy and overall model performance. However, the use
of approximated activation functions entails certain trade-offs. On the one hand, it allows the model to handle encrypted data, which is a
key requirement for privacy preservation. On the other hand, the approximation may result in lower model accuracy compared to using
traditional activation functions. This is because the approximated functions may not fully reproduce the behavior of their nonlinear
counterparts, which may have an impact on the learning process and the model's ability to generalize.

The study demonstrates how neural networks can be adapted to handle encrypted data using an approximation of activation functions for
compatibility with homomorphic encryption. This opens new possibilities for developing secure and privacy-preserving machine learning
systems, although further research is needed to optimize the balance between security, privacy, and model performance.

3 Modeling

3.1 Description of algorithms

The ConvNet class represents an essential element for experimenting and analyzing neural networks in the context of deep learning. This
class serves an important purpose in defining and structuring neural network models, providing the necessary tools for exploring different
architectures and learning algorithms.

First, the ConvNet class plays a key role in defining the model architecture. Here, the types of layers, their parameters, and the connections
between them are defined, allowing researchers to create and adapt models to solve specific problems. It facilitates code organization and
structuring. Putting all model components inside a class makes the code cleaner and more modular, which makes it easier to understand
and maintain, especially in the case of complex models. In addition, the ConvNet class utilizes PyTorch functionality, allowing you to
use a wide range of built-in methods and functions to work with the model. This includes optimization, loss computation, and other
functions needed to effectively train and evaluate models.

The ConvNet class includes two functions - def __init__ and def forward. The detailed description of the algorithm of each function will
be given below.

The __init__ function represents the constructor of the ConvNet class, which is a subclass of torch.nn.Module. It performs initialization
of the neural network object, defining its structure and parameters. At the beginning of the function, the constructor of the parent class is
called with super(ConvNet, self).__init_ (), which allows the methods and attributes of the parent class to be used. Then the attributes of
the neural network such as convolution layers (convl) and full-link layers (fc1, fc2) are defined.

The related neural network objects torch.nn.Conv2d and torch.nn.Linear represent neural network layers that have different parameters
such as the number of input and output channels, convolution kernel sizes, input and output dimensions, and others.

In this case, self.convl is a convolutional layer that takes as input images with one channel (since kernel_size=7), performs convolution
with 4 filters and uses parameters padding=0 and stride=3, and self.fc1 and self.fc2 are full-connected layers that take as input vectors of
dimension 256 (after leaving the convolutional layer) and output vectors of dimension hidden and output, respectively.

The __init__ function initializes the neural network structure, defining the layers and their parameters to be used in the training and
prediction process.

The forward function is to define the process of direct passage of data through the neural network. This function represents the main part
of the neural network operation, in which input data is fed to the input of the network, passes through various layers and is returned as
predictions or output values.

The input data X, representing images, is first passed through the convolution layer self.convl, which performs convolution with known
filters on the input data, creating a set of feature maps. This extracts important features from the images.

Next, the convolution result is subjected to a quadratic activation function, which in this context means a piecewise multiplication of the
convolution result by itself. This can help to enhance the activation of certain features in the data.

The data is then transformed using the view method into a form compatible with the expected input dimensionality for the next fully
connected layer self.fc1. This converts the multidimensional data into a one-dimensional vector that can be fed as input to the fully linked
layer. The transformed data is passed through the full-link layer self.fc1, where linear combinations of the input data and their weighting
factors are computed.

Like the previous step, the result of passing through self.fcl is also subjected to a quadratic activation function. The data passes through
the last full-link layer self.fc2, which converts the output from self.fc1 into expected predictions or task-specific output values.

Mathematical Model of the ConvNet Constructor

Consider a convolutional neural network (ConvNet) with the following layers
and parameters:

e Input image: I, a single-channel image.

o First convolutional layer (C'1): Applies 4 filters of kernel size 7 x 7 with
stride 3 and padding 0.

e First fully connected layer (Fi): Transforms the flattened feature maps
into a hidden layer with H neurons.

e Second fully connected layer (F3): Maps the hidden layer to an output
layer with O neurons.

The mathematical operations performed by the ConvNet are as follows:
1. The first convolutional layer operation can be defined as:
Ci(I) = Conv2d(I, K1, 51, F)

where Ky = 7 x T is the kernel size, S; = 3 is the stride, and P; = 0 is the
padding.

2. The output of C is then passed through an activation function (not speci-
fied in the model description, commonly ReLU is nsed) and possibly other
operations like pooling or normalization before being flattened and fed
into the first fully connected layer.

3. The first fully connected layer operation is given hy:
Fi(X) = XWpg, +bp,

where X is the input vector to Fy, Wr, and bp, represent the weights and
biases of Fj, respectively.

4. The second fully connected layer operation is similarly defined as:
F(Y)=YWg, +bp,

where Y is the input vector to F», derived from the output of Fy, Wg,
and bp, represent the weights and biases of Fy, respectively.

This model outlines the structure of the ConvNet, emphasizing the sequence
from convolutional layer processing to the final output generation through fully
connected layers.

Algorithm 1: Forward Pass Function

R exhxw pepresenting a batch of

Input : An input tensor = €
images.
Output: The output tensor x after processing through the neural

network.
// Apply the first convelutional layer.
x + convl(z)
// Apply quadratic activation function.
T4 XT
// Reshape the tensor for the fully connected layer.
x + x.view(—1, 256)
// Apply the first fully connected layer.
x +— fel(x)
// Apply quadratic activation function again.
AT XT
// Apply the second fully connected layer.
x4 fe2(x)
return x

The train function represents the process of training a neural network on training data. During training, the model sequentially goes
through several steps, including passing input data through the neural network, calculating losses, updating model parameters based on
the calculated gradients and repeating this process for each training epoch. At the end of each epoch, the current loss on the training data
is output. When training is complete, the function returns the trained model for later use.

Algorithm 2: Training Process of a Neural Network

Input : A model M, training data loader D, loss function L,
optimizer O, number of epochs E.
Output: Trained model M.
M train()
fore=1to E
Li:ofnf +0
for each batch (xy,ys) in D
O.zero_grad|()
outputy, + M(xp)
loss +— L(outputy,ys)
loss.backward()
O.step()
Liotai < Liotal + loss.item()
L,-?m(_.h — me;/len([))
print "Epoch: 7, e, "Loss: 7, Lepoch
M eval();

The test function is intended for testing the trained model on a test data set. First, it puts the model into eval mode to ensure that no
learning occurs during testing. It then traverses through each test data loader batches, passing the data through the model and calculating
the loss using the specified loss function. As the data passes through, it also counts the correct answers for each class and the total number
of correct answers for the entire test dataset. At the end of the test, it outputs the average test loss and prediction accuracy for each class,
as well as the overall test accuracy.

Algorithm 3: Model Testing and Evaluation

Input : A model M, test data loader D;..;, loss function L.
Output: Test loss and accuracy for each class and overall.

M.eval()

Ltotaf +—0

class grrect + list of zeros with length equal to number of classes
classiyqa + list of zeros with length equal to number of classes

for each batch (z;,y;) in Dics do

output +— M (x;)

loss «+ L(output,y;)

Liotal ¢ Liotar + loss.item()

// Prediction and accuracy calculation
pred +— arg max(output)

correct < pred == y;

for i < 0 to length(y;) - 1 do

class correct [Y;[1] < €lasscorrect[y;[i]] + correct[i]
classiorar[y;[i]] < classiorar[y;[i]] + 1

end

end

_ Liotar
Limean length(Dicat)

print "Test Loss: ", Lean
for label in 0 to number of classes - 1 do

. classqorrect [label
ACCUTACY — s rotar[label] X 100

print "Test Accuracy of 7, label, 7: 7, accuracy, "%
end
. Z{Csﬂ-‘”‘om'rr:('”
overallyceuracy S elassioe)” X 100
print "Test Accuracy (Overall): 7, overallyccuracy. %"

The EncConvNet class is an encrypted version of the ConvNet neural network designed to work with encrypted data. Inside the class are
stored parameters of the original ConvNet model, such as weights and offsets of convolutional and full-link layers copied from the trained
model. These parameters are stored in specially organized class variables for later use when passing data directly through the encrypted
neural network. It is a tool for working with encrypted data using neural networks, providing the ability to perform convolution and direct
data transformation operations using the stored parameters.

The __init__ function is intended for initialization of the class object. It takes an instance of the torch_nn model as input, assuming it is
a trained ConvNet model. The function then copies the weights and offsets from the convolutional and full-connection layers of this
model, converting them to a Python list. Each convolution layer weight is represented as a three-dimensional array, and each offset is
represented as a one-dimensional array. The weights of the fully connected layers are represented as two-dimensional arrays, and the
offsets are represented as one-dimensional arrays.

Algorithm 4: Initialization of the Model with Pre-trained ConvNet
Weights
Input: A pre-trained ConvNet model My,,..;, with layers convl, fel,
and fc2.
Output: A new model structure M,,.,, initialized with weights and
biases from M;,,.op.

// Copying weights and biases from the first convolutional
layer.
Afnﬁ'u'-CO?H"]-'wm'ght —
Mioren-convl.weight.data.view(Mygpen,.convl.out_channels, Myppep .convl.kernel_size[0], Mygpen.convl

My -convlpine < Migpen.convl.bias.data.tolist()

// Copying weights and biases from the first fully connected
layer.

Myew.fcluweight < Mioren.fel.weight” .data.tolist()

Mew-felpias < Migren-fel.bias.data.tolist()

// Copying weights and biases from the second fully
connected layer.

Mew-f2uweight M;oren-fe2weight™ data.tolist()

Mew-f2pias < Migren-fe2.bias.data.tolist()

The forward method in the EncConvNet class represents the direct passage of data through an encrypted neural network. First, the
encrypted input data passes through the convolution layer, where a convolution transform is applied to each data window using the kernels
and offsets stored in the class object. The resulting convolution outputs are then combined into a channel list. Next, a quadratic activation
function is applied to the resulting encrypted channels, after which the data is fed to the full-link layers fcl and fc2. For each layer, the

encrypted data is multiplied by the corresponding weights stored in the class object and the corresponding offsets are added. After each
full-link layer, a quadratic activation function is also applied.

Algorithm 5: Training Process of a Neural Network

Input : A model M, training data loader D, loss function L.,
optimizer @, number of epochs E.

Output: Trained model M.

M train()

fore=1to FE

Ltotm’ +0

for each batch (xp,ys) in D

O.zero_grad()

outputy, + M (xy)

loss +— L(outputy, ys)

loss.backward()

O.step()

Liotai < Liotar + loss.item()

Lepoch — Lfotai/len(D)

print "Epoch: 7, e, "Loss: ", Lepoch

M.eval()

The enc_test function is designed to evaluate the performance of the encrypted model on a test dataset. The initial part of the function
execution includes initialization of variables to store the total loss and statistics on correctly classified objects for each category. During
the model testing process, the following algorithm is executed on each data batch from the test loader, which is described below

Algorithm 6: Testing an Encryvpted Neural Network Model

Input: Encryption context C, encrypted model M,,,., test data loader
Dyest, loss function L, kernel shape K pape, stride S.
Output: Test loss and accuracy metrics for each class and overall.

Initialize total test loss Liopar < 0
Initialize correct and total counters for each class, class,., yeet <+ list of
zeros(10), class;orar — list of zeros(10)

foreach (data,target) in Dy.; do
// Prepare data: encrypt input data
Tone, Windows,,p, +—
ts.im2col_encoding(C, data.view(28, 28).tolist(), Kihape[0], Kehape[1], S)

// Encrypted prediction

enc_output <+ M ,..(Z e, windows,,,)

// Decrypting the result

output < enc_output.decrypt()

output < torch.tensor(output).view(1, —1)

// Loss computation

loss + L(output, target)

Liotar+ = loss.item()

// Convert output probabilities to predicted class
pred + torch.maz(output, 1)

// Compare predictions with the true label
correct < np.squeeze(pred.eq(target.data.view_as(pred)))
// Update test accuracy for each class

label « target.datal0]

class prrect [labell+ = correct.item()

classiorar[label]+ =1

end

// Calculate and print the average loss on the test set

Lpean Ltotm‘/ Z(CZ&SStOm;)
print("Test Loss: 7, Lyean)
for label + 0 to 9 do
print(”Test Accuracy of ”, label, ": 7,
100 x classeorrect [label]/classipiar[label], "% (7, class orrect [label],
"), classiorar|label], 7))
end

print(” Test Accuracy (Overall): 7, 100 x 3 (classcorrect)/ D (classiotal),
"% (7. do(classcorrect), 7 /7y do(classtotar), 7))

3.2 Results of the experimental study

As part of the research, experiments were conducted to train and test the neural network, as well as its encrypted version, using the MNIST
dataset. The aim of the experiment was to evaluate the performance of the model in normal and encrypted modes, and to study the effect
of homomorphic encryption on the performance and accuracy of the model. The hardware configuration consists of an Intel(R) Xeon(R)
CPU E5-2696 v3 CPU clocked at 2.30 GHz, 32 GB of DDR4 RAM at 2133 MHz, and a 1 TB SSD. The average time was measured by
running the algorithms 100 times on the platform. During the experiment process, data was collected on training and testing losses as
well as classification accuracy for each class. Additionally, the CPU utilization during training was measured.

45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

Accuracy

1 2 3 4 5 6 7 8 9 10
Epoch number
Figure 1: Learning Losses graph

Figure 1 shows the dynamics of neural network losses during training over 10 epochs. The X axis represents the numbers of epochs (from
1 to 10), and the Y axis represents the number of losses. The graph shows a decrease in loss with each subsequent epoch, indicating an
improvement in the model's ability to learn and adapt to the data.

25%
(5]
2
£ 20%
(5]
o
S 150
[
S
= 10%
N
5 5%
>
o
O 0%

1 2 3 4 5 6 7 8 9 10
Epoch number
Figure 2: Graph "CPU utilization during training"
Figure 2 illustrates the percentage of CPU utilization during each epoch of model training. The X axis represents the epoch numbers, and
the Y axis represents the percentage of CPU utilization. The graph can show changes in CPU utilization depending on the complexity of
the computation at each epoch.

100%
98%

96%

Accuracy

94%

92%
0 1 2 3 4 5 6 7 8 9

=@=ToyHOCTb (0OLIYHAs) =@=TounocTs (3ammubpoBanHas)
Epoch number
Figure 3: "Test Accuracy" graph

Figure 3 shows the accuracy of the model classification on the test data for each of the 10 classes, as well as the overall accuracy. The X-
axis represents the classes (0 through 9) and the Y-axis represents the percentage of accuracy for each class. The graph helps visualize
how the model performs in classifying different categories, identifying the classes on which the model performs better or worse.

The experimental results show that the neural network exhibits high accuracy in both the normal and encrypted modes, with a slight
increase in overall accuracy in the encrypted mode. This indicates that the application of homomorphic encryption does not have a
significant negative impact on the model's classification ability. However, an increase in training loss in the encrypted mode is observed,
which may indicate the need for additional optimization of the model parameters to handle encrypted data. The processor load during
training remained within normal limits, which confirms the effectiveness of using this neural network architecture for image classification
tasks.

4. Conclusion

The result of a study on adapting neural networks to work on encrypted data using homomorphic encryption is significant, highlighting
the potential and limitations of this approach in the field of machine learning. The study demonstrates that by approximating activation

functions and using homomorphic encryption, neural networks can be successfully trained and tested on encrypted data while maintaining
a high level of privacy.

The results of a study on adapting neural networks to handle encrypted data when applying homomorphic encryption present significant
findings that highlight the potential and limitations of this approach in the context of machine learning. The analysis demonstrates that
by approximating activation functions and using homomorphic encryption, neural networks can be successfully trained and tested on
encrypted data while maintaining a high level of privacy.

Examining the training and testing results of the neural network, we conclude that the model exhibits improved performance with each
epoch, as evidenced by the reduction of loss during training. This indicates that the neural network successfully adapts to the data and
learns efficiently. In addition, the observed CPU load during training remains within normal limits, indicating the effectiveness of using
this neural network architecture for image classification tasks.

The results of testing the model on test data demonstrate high classification accuracy for each of the classes, as well as overall accuracy,
which confirms the effectiveness of the model in classification tasks. It is interesting to note that the encrypted version of the model shows
comparable, and in some cases even higher accuracy, indicating that the use of homomorphic encryption does not negatively affect the
model's classification ability.

It should be noted that the use of approximated activation functions and homomorphic encryption requires further research to optimize
the balance between security, privacy, and model performance. It is important to study the impact of different types of activation function
approximation on the accuracy and overall performance of the model, and to develop methods to improve the performance of encrypted
neural networks.

The results of this study open new perspectives for the development of secure and privacy-preserving machine learning systems,
especially in areas where sensitive data processing is required. They also emphasize the importance of continued research in this area to
achieve the optimal combination of security, privacy, and efficiency in neural networks.

References

[1] Azraoui, M., Barham, M., Bozdemir, B., et al (2019). SoK: Cryptography ~ for Neural Networks.
[2] Madi, A., Sirdey, R., Stan, O. (2020). Computing Neural Networks with Homomorphic Encryption and Verifiable Computing.
[3] Shi, J., Zhao, X. (2023). Anti-leakage method of network sensitive information data based on homomorphic encryption
[4] Yeow, S.-Q., Ng, K.-W. (2023). Neural Network Based Data Encryption: A Comparison Study among DES, AES, and HE Techniques.

[5] V. Subramaniyaswamy, V. Jagadeeswari, V. Indragandhi, R. Jhaveri, V. Vijayakumar, K. Kotecha, Logesh Ravi, "Somewhat Homomorphic
Encryption: Ring Learning with Error Algorithm for Faster Encryption of 10T Sensor Signal-Based Edge Devices", 2022.

[6] Alessandro Falcetta, M. Roveri, "Privacy-Preserving Deep Learning With Homomorphic Encryption: An Introduction”, 2022.

[7] Craig Gentry, "A fully homomorphic encryption scheme", .

[9] Seungjae Chae, Joon-Woo Lee, Yongwoo Lee, Jong-Seon No, "Ciphertext Refresh Using Communication Cost on CKKS Fully Homomorphic
Encryption”, 2023.

[10] Sajjad Akherati, Xinmiao Zhang, "Low-Complexity Ciphertext Multiplication for CKKS Homomorphic Encryption", .

[11] Samanvaya Panda, "Principal Component Analysis Using CKKS Homomorphic Scheme”, .

[12] Infall Syafalni, Daniel M. Reynaldi, R. Munir, T. Adiono, N. Sutisna, Rahmat Mulyawan, "Complexity Analysis of Encoding in CKKS-Fully
Homomorphic Encryption Algorithm", 2022.

[13] T. Wingarz, M. Gomez-Barrero, C. Busch, M. Fischer, "Privacy-Preserving Convolutional Neural Networks Using Homomorphic Encryption”,
2022.

[14] Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, Alaa Eddine Belfedhal, "TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic
Encryption”, 2021.

[15] Yancho B. Wiryen, Noumsi Woguia Auguste Vigny, Mvogo Ngono Joseph, Fono Louis Aimé, "A Comparative Study of BFV and CKKs Schemes
to Secure loT Data Using TenSeal and Pyfhel Homomorphic Encryption Libraries", 2023.

[16] Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian Rechberger, Markus Schofnegger, Roman Walch, "Pasta: A Case for Hybrid
Homomorphic Encryption”, 2023.

[17] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, D. Cousins, Saroja Erabelli, N. Genise, S. Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee,
Zeyu Liu, D. Micciancio, lan Quah, Y. Polyakov, Saraswathy R.V., K. Rohloff, Jonathan Saylor, Dmitriy Suponitsky, M. Triplett, V. Vaikuntanathan,
Vincent Zucca, "OpenFHE: Open-Source Fully Homomorphic Encryption Library", 2022.

[19] Hongquan Li, Yunfei Cao, "Study on linear optimization of activation function of homomorphic encryption neural network", 2021.

[20] Srinath Obla, Xinghan Gong, Asma Aloufi, Peizhao Hu, Daniel Takabi, "Effective Activation Functions for Homomorphic Evaluation of Deep
Neural Networks", 2020.

[21] Kohei Yagyu, Ren Takeuchi, M. Nishigaki, Tetsushi Ohki, "Improving Classification Accuracy by Optimizing Activation Function for
Convolutional Neural Network on Homomorphic Encryption”, .

[22] F. Temurtas, Ali Gllbag, N. Yumusak, "A Study on Neural Networks Using Taylor Series Expansion of Sigmoid Activation Function™, 2004.

[23] Srinath Obla, Xinghan Gong, Asma Aloufi, Peizhao Hu, Daniel Takabi, "Effective Activation Functions for Homomorphic Evaluation of Deep
Neural Networks", 2020.

[24] Hongquan Li, Yunfei Cao, "Study on linear optimization of activation function of homomorphic encryption neural network", 2021.

[25] Kohei Yagyu, Ren Takeuchi, M. Nishigaki, Tetsushi Ohki, "Improving Classification Accuracy by Optimizing Activation Function for
Convolutional Neural Network on Homomorphic Encryption”, .

[26] llsang Ohn, Yongdai Kim, "Smooth Function Approximation by Deep Neural Networks with General Activation Functions", 2019.

Information about authors

Maria A. LAPINA - Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of Information Security
of Automated Systems of the North Caucasus Federal University.

Nikita FISENKO - student of the Department of Information Security of Automated Systems of the North Caucasus Federal University.

Egor SHIRIAEV is a graduate student of the North Caucasus Federal University of the Faculty of Mathematics and Computer Sciences
Named after Prof. Nikolay Chervyakov. Research interests: modular arithmetic, neurocomputer technologies, cryptographic methods of
information protection.

S NEELAKANDAN is PhD, Associate Professor of the Department Computer Science and Engineering of the R.M.K

Engineering College affiliated to Anna University, Kavaraipettai, India

