
Abstract—Although software development is mostly a creative
process, there are many scrutiny tasks. As in other industries,
there is a trend for automation of routine work. In many
cases, machine learning and neural networks have become a
useful assistant in that matter. Programming is not an exception:
GitHub has stated that Copilot is already used to write up to 30%
of code in the company. Copilot is based on Codex, a Transformer
model trained on code as a sequence. However, a sequence is not a
perfect representation for programming languages. In this work,
we claim and demonstrate that by combining the advantages of
Transformers and graph representations of code, it is possible to
achieve excellent results even with comparably small models.

Keywords—Neural networks, Transformers, graphs, abstract
syntax tree



GraphTyper: Neural Types Inference from Code
Represented as Graph

German Arutyunov∗
gaarutyunov@edu.hse.ru

Sergey Avdoshin∗

savdoshin@hse.ru

∗HSE University, 20, Myasnitskaya st., Moscow, Russia

I. INTRODUCTION

Application of Transformers yet again has managed to break
the deadlock: this time in the task of code generation [1, 2,
3, 4]. Nevertheless, the versatile Transformer architecture has
displayed good results on several benchmarks, in the recent
work [5] it was shown that increasing the size of the model
doesn’t result in a better performance. Moreover, it is evident
that context matters a lot to produce a working code. However,
it is not practical to relentlessly increase the length of context
sequence in a Transformer. Therefore, a different approach
is needed to boost the efficiency in machine programming
tasks [6].

First of all, an expressive code representation has to be
selected. Several ways, including token-based, structured and
graph-based approaches, have been reviewed [7]. For instance,
graph representation using abstract syntax tree (AST), data-
flow graph (DFG) and control-flow graph (CFG) yield good
results in such tasks as variable misuse detection and correc-
tion [8]. Such graph representation can capture an extensive
amount of information about the program’s code.

Secondly, a versatile model architecture that supports learn-
ing on graphs must be used. Multiple models such as RNN [9],
LSTM [10] and CNN [11] with flattened graphs have been
used. However, graph-aware model architecture is more suit-
able for the graph representation of code. For this reason,
Graph Neural Networks (GNN) are a more reasonable choice
of architecture, namely message-passing neural networks [8].

Nonetheless, in this work we aim to make the most of both
worlds: the advantages of Transformer architecture and graph
representation of code. For instance, we will use Transformer
architecture optimizations [12] and graph code representation
created from AST and DFG. To make this possible, we will
use Pure Transformers [13] instead of models that have some
architectural alterations to support graph structure [14, 15,
16].

II. PROBLEM STATEMENT

In this work, we test the ability of Pure Transformers to add
types to Python source code based on its graph structure. This
task was selected as a starting point for future research due to
its practical relevance.

Firstly, dynamically typed languages, such as Python and
JavaScript, have gained quite some traction during the last
years [17]. However, it doesn’t mean they’re easier [18, 19,
20] or less error-prone than statically typed languages [21].

Moreover, lack of type hints in libraries might lead to expen-
sive errors in fields such as Data Science [22].

There are some tools outside the neural networks domain
that perform static type checking and inferencing type annota-
tions [23, 24]. Nonetheless, these utilities do not work without
type hints in the source code of the dependencies, which is
pretty common. To alleviate this, there are proposals about
Domain-Specific Languages (DSL) for Data Science [22].
However, it wouldn’t work on existing code base and massive
adoption is not very likely.

On the other hand, absence of type hints is not a restriction
for neural networks (see. Section V-B). In addition, they don’t
only find erroneous types in existing codebase [25] but can
also be used during development to annotate code on the
fly [26].

Most importantly, inferring types requires a model to learn
a lot about the source code. Therefore, developing a model
with versatile architecture to infer types allows it to be later
applied for other tasks.

A. Metrics

To test the model, we use two metrics from the Typilus
paper [25]:

Exact Match: Predicted and ground truth types match
exactly.
Match up to Parametric Type: Exact match when
ignoring all type parameters.

III. PREVIOUS WORK

A. Graph Representation of Code

AST and DFG have already been used with Transformers
in the code generation and summarization tasks [27, 28, 29].
In addition, some joint graph structure representations that
include different code graphs have been developed, namely
code property graph (CPG) [30], that incorporates AST, CFG
and PDG (program dependency graph). This graph represen-
tation has already been used for vulnerability detection [30]
and similarity detection [31].

B. Graph Transformers

Graph Transformers is a novel architecture that has been
developing in the past few years. They have been applied for
several tasks, mostly in the field of molecule generation, node
classification and node feature regression [13, 14, 15, 16].



TABLE I
QUANTITATIVE EVALUATION OF MODELS MEASURING THEIR ABILITY TO

PREDICT GROUND TRUTH TYPE ANNOTATIONS.

Exact Match Up to Parametric Type

Top-n Model

Top-1

GraphTyper 34.71 36.43

TypeBERT 45.40 48.10

Typilus 56.10 58.30

Type4Py 66.10 74.20

TypeWriter 75.80 80.60

TypeGen 79.20 87.30

Top-3

GraphTyper 45.47 55.02

TypeBERT 51.40 53.50

Typilus 63.70 67.30

Type4Py 71.60 79.80

TypeWriter 78.10 83.80

TypeGen 85.60 91.00

Top-5

GraphTyper 50.70 64.58

TypeBERT 54.10 56.50

Typilus 65.90 70.40

Type4Py 72.70 80.90

TypeWriter 78.70 84.70

TypeGen 87.00 91.70

Apart from models with alterations to Transformer base archi-
tecture [16, 14] researchers have recently developed simpler
models [13] that are compatible with many popular techniques
developed for standard Transformers [12].

C. Type Inference with Neural Networks

The task of type inference has been also extensively covered
in recent research. Many different architectures have been used
for this task: GNNs [25], RNNs [32, 26] and Transformers [33,
34] among others. Moreover, graph representation of code
has been used for the task of type inference in dynami-
cally typed programming languages such as Python [25] and
Javascript [35].

However, the power of Graph Transformers and Graph
Representation of code hasn’t been combined yet to solve the
task of type inference in source code. This is the gap our model
aims to fill. The results of our model compared to previous
work [26, 25, 32, 33, 34] are displayed in Table I.

IV. PROPOSED SOLUTION

A. Dataset

To train and test the model we gathered 600 Python
repositories from GitHub containing type annotations from
Typilus [25]. We clone these repositories and use pytype [24]
for static analysis, augmenting the corpus with inferred type
annotations. The top 175 most downloaded libraries are added

to the Python environment for type inference. Through dedu-
plication, we remove over 133 thousand code duplicates to
prevent bias.

The resulting dataset comprises 118,440 files with 5,997,459
symbols, of which 252,470 have non-Any non-None type
annotations. The annotations exhibit diversity with a heavy-
tailed distribution, where the top 10 types cover half of the
dataset, primarily including str, bool, and int. Only 158 types
have over 100 annotations, while the majority of types are
used fewer than 100 times each, forming 32% of the dataset.
This distribution underscores the importance of accurately
predicting annotations, especially for less common types. The
long-tail of types consists of user-defined and generic types
with various type arguments.

In addition to extracting graphs from source code AST, we
split them by setting a maximum node and edges number in
one graph. For this, we prune the graphs around nodes that
have annotations that are later used as targets during training
and testing. Finally, we split the data into train-validation-test
sets with proportions of 70-10-20, respectively.

B. Model Architecture

We base our model architecture on TokenGT [13]. The
main advantage of this model is that standard Transformer
architecture is not altered to support graph data. It allows us to
use some advantages developed specifically for Transformers.
For instance, Performer [12] is used to speed up training by
using linear time as space complexity.

The main idea of the authors is that combining appropri-
ate token-wise embeddings and self-attention over the node
and edge tokens is expressive enough to accurately encode
graph structure to make graph and node-wise predictions.
The embeddings in the model are composed of orthonormal
node identifiers, namely Laplacian eigenvectors obtained from
eigendecomposition of graph Laplacian matrix. In addition,
type identifiers are used to encode types of tokens (nodes or
edges).

In our model, we use node and edge types extracted from
code as token features. Node ground truth annotations are
added to the features and randomly masked during training.
The overall architecture of the model is displayed at Figure 1.

1) Masked Transformer Encoder Model: Predicting type
annotations in graph domain is a node classification task.
However, since we are using a Pure Transformer with graphs
represented as a sequence of tokens, the task can be reduced to
token classification. In the Natural Language Processing (NLP)
domain, this is a ubiquitous task, also known as Named Entity
Recognition (NER).

Encoder-only architecture has been widely used for the NER
task, namely BERT is one of the most popular models [36,
37]. We adapt similar architecture by randomly masking type
annotations. We then apply an MLP layer to the output of
TokenGT [13] to get logits of type annotations.

Masked model architecture is very versatile, and the pre-
trained model can be later easily fine-tuned for other tasks,
similar to the approaches from the NLP-domain [36]. For



Source code

V 1

V 2

V 3

V 4

AST Graph

Type
Identifiers

v

[node]

e

[edge]
Node

Identifiers 1 2 3 4

orthonormal

1

1

v

Randomly masked type annotations

1

2

e

2

2

v

2

3

e

3

3

v

3

4

e

4

4

v

4

2

e

Node and Edge Tokens
with Token-wise Embedding

Transformer Encoder

Type annotation predictions

Fig. 1. GraphTyper Architecture. The source code is first transformed into AST graph, then type annotations are randomely masked. The graph is enriched
by token type identifiers (node or edge) and orthonormal node identifiers obtained from eigendecomposition of Laplacian matrix. The resulting graph is fed
through a Transformer Encoder to obtain type annotations for masked nodes.

example, error [38] and vulnerability [39] data can be added
to the code graph to detect and fix them [40, 41, 42, 43, 44].

V. EXPERIMENTS AND ABLATION RESULTS

To select the final model architecture, we test different
models. For our experiments and ablation analysis, we train
and test the models using one sample repository. We also limit
the number of types in the vocabulary to one hundred to speed
up training and use less resources. To test the models, we
calculate Top-n predictions similar to the previous work [26].
Table II depicts the results of the experiments and ablation.

A. Validating the necessity of node and type identifiers that
encode graph structure

First of all, we remove the node and type identifiers intro-
duced by Kim et. Al [13] our ablation analysis demonstrates
that indeed, the graph structure embeddings play a key role in
model quality. By removing them from the model, we are left
with a simple Transformer that makes predictions only based
on AST nodes and edges types without any information about
graph structure. Such a model outputs the worst results among
all the experiments.

B. Using the model without node type annotations

In addition, we try to remove the type annotations from
the model completely. This alteration turns our training into a
masked NER task. Surprisingly, our model performs well in
such conditions. This means that the selected graph represen-
tation of code contains a lot of necessary information to infer
types.

C. Increasing the number of parameters

As we can see, increasing the number of parameters also in-
creases the predictive power of the model. However, increasing
the parameters indefinitely is not very practical and requires
a lot of computational resources [6]. Moreover, keeping the
low number of parameters allows us to use longer context
length (more node and edges in graph) during inference with
same resource capabilities. Therefore, we don’t change the
parameter number of the final model, so it remains compact.

D. Testing different context length

As for the context length, i.e., maximum number of nodes
in graph (512 vs. 1024), our findings are aligned with the con-
clusions from previous work [6]: longer context increases the
performance of the model. However, the AST representation
of source code is very bloated and even having a lot of nodes
in the graph might not capture enough useful information to
make quality predictions. In addition, increasing the context
length drastically slows down the training process. Thus, in
future research, we will be working on finding a better and
more compact graph representation of code.

E. Testing different Transformer architectures

Recently, Masked Graph Autoencoders have been applied
for the tasks of link prediction and node classification [45],
as well as feature reconstruction [46, 47]. To validate the
robustness of the Encoder-only Model, we also implement a
Masked Autoencoder Model. For this, we adapt the approach
of Hou et. al [47] for our model. We introduce a learnable
mask token and a decoder based on the encoder layers. We
reconstruct the type annotations by re-masking the target nodes
before feeding them into the decoder. However, we do not
observe as good results as with a simple Encoder-only model.



TABLE II
EXPIREMENT RESULTS OF TOP-N PREDICTIONS FOR DIFFERENT MODEL

VARIANTS.

Exact Up to Parametric Type

Top-n Model

Top-1

Plane Transformer 10.15 19.46

+ Node & Type Identifiers 30.88 36.55

+ Type Annotations 33.36 42.28

+ Decoder (Autoencoder) 15.90 16.65

or Longer Context 38.49 39.80

or More Parameters 29.39 31.82

Top-3

Plane Transformer 15.06 29.40

+ Node & Type Identifiers 40.33 50.37

+ Type Annotations 41.71 52.90

+ Decoder (Autoencoder) 28.26 32.81

or Longer Context 53.14 57.41

or More Parameters 44.85 49.72

Top-5

Plane Transformer 16.81 37.91

+ Node & Type Identifiers 42.82 56.01

+ Type Annotations 43.62 57.00

+ Decoder (Autoencoder) 44.17 56.33

or Longer Context 58.80 67.38

or More Parameters 49.74 56.14

VI. KNOWN LIMITATIONS

A. Size of Type Vocabulary

Since we define our task as node (token) classification,
we feed our transformer output into a classifier linear head.
Therefore, our type vocabulary is limited. Because of the com-
putational resources constraints, we limit it to one thousand
types.

This issue is addressable by formulating the task as Deep
Similarity Learning Problem [48, 49]. In this way, the model
will output vector representations of types that can be grouped
into cluster of similar types. After that, an algorithm such as
KNN [50] is used to transform vector representation into a
probability of each type [25, 26].

B. Absence of Natural Language information

In our work, we use only categorical features of nodes
and edges of code graph, e.g. AST node types and Python
type annotations. Therefore, it would be challenging to apply
it directly for tasks such as code generation, because the
representation doesn’t encode any information about variable
names.

There are several approaches that would help address this
issue. Firstly, it is possible to use the model output as graph
encoding that would be later fed into another model along
with tokenized code [51]. This approach could also address
the issue from the previous Section VI-A, since types would
be treated as a set of text tokens [34]. Secondly, it is possible to

use neural networks to infer variables’ names from the context
they are used in [52].

VII. FUTURE WORK

In this work, we explored the application of Graph Trans-
formers for type inference. The versatile architecture of the
proposed solution lets us explore other tasks.

A. Universal code graph representation

If a universal version of graph code representation is used,
similar to CPG [30], we can train the model for multiple pro-
gramming languages [27]. However, because of the differences
of type systems, separate models would be trained for each
programming language for better results.

B. Detecting duplicates

It is crucial to address the issue of duplicates in source code
to train neural networks for code [25, 26]. Several architectures
have already been used for such task: Transformers [53],
GNNs [54] and RNNs [55]. We believe that the graph rep-
resentation obtained with our model can be successfully used
for code clone detection.

C. Code and docstring generation

Firstly, we can train the model using a technique similar
to generative pretrained models [56, 57] or masked language
models [51] to generate code. Secondly, our model can be used
to generate code summarization or docstring generation [58,
59]. This could only be possible if we adapt some of the
approach discussed in the previous Section VI-B

D. Vulnerability and error detection

Another useful task is to detect errors and generate fixes [60,
61]. This is possible by simply adding features that contain
error indication or types. Similar approach can be used to scan
for vulnerabilities [41, 44, 40]. Fixing bugs and vulnerabilities,
however, would imply that the graph structure could change.
Therefore, solving this task would require the model to be
modified for graph generation [62].

E. Refactoring

Finally, we can extend our model with information about
changes to analyze them and propose refactoring possibili-
ties [63]. This goal could be achieved by using the model
from the previous Section VII-D.

VIII. CONCLUSION

As for the conclusion, we were able to create a universal
model based on TokenGT [13] and code represented as graphs.
One of the most important advantages of this model is that
it uses the code graph directly. Secondly, the model can
be modified to fit other tasks, such as code generation and
summarization, docstring generation, refactoring and many
more. The code graph can also be extended by different
features and node types, since the representation does not
differ depending on graph structure.



IX. ACKNOWLEDGMENTS

This research was supported in part through computational
resources of HPC facilities at HSE University [64].

REFERENCES

[1] Dan Hendrycks et al. “Measuring coding chal-
lenge competence with apps”. In: arXiv preprint
arXiv:2105.09938 (2021).

[2] Mark Chen et al. “Evaluating large language models
trained on code”. In: arXiv preprint arXiv:2107.03374
(2021).

[3] Yujia Li et al. “Competition-Level Code Generation
with AlphaCode”. In: (), p. 74.

[4] Erik Nijkamp et al. “A Conversational Paradigm
for Program Synthesis”. In: arXiv preprint
arXiv:2203.13474 (2022).

[5] Frank F. Xu et al. “A Systematic Evaluation of
Large Language Models of Code”. In: arXiv preprint
arXiv:2202.13169 (2022).

[6] German Arsenovich Arutyunov and Sergey
Mikchailovitch Avdoshin. “Big Transformers for
Code Generation”. In: Proceedings of the Institute
for System Programming of the RAS 34.4 (2022).
Publisher: Institute for System Programming of
the Russian Academy of Sciences, pp. 79–88.
DOI: 10 . 15514 / ispras - 2022 - 34(4) - 6. URL: https :
//doi.org/10.15514%2Fispras-2022-34%284%29-6.

[7] S.M. Avdoshin and G.A. Arutyunov. “Code Analysis
and Generation Methods Using Neural Networks: an
Overview”. In: INFORMATION TECHNOLOGIES 28.7
(2022), pp. 378–391. DOI: 10.17587/it.28.378-391.

[8] Miltiadis Allamanis, Marc Brockschmidt, and Mah-
moud Khademi. “Learning to represent programs with
graphs”. In: arXiv preprint arXiv:1711.00740 (2017).

[9] Martin White et al. “Deep learning code fragments
for code clone detection”. In: 2016 31st IEEE/ACM
International Conference on Automated Software En-
gineering (ASE). IEEE, 2016, pp. 87–98.

[10] Huihui Wei and Ming Li. “Supervised Deep Features
for Software Functional Clone Detection by Exploiting
Lexical and Syntactical Information in Source Code.”
In: IJCAI. 2017, pp. 3034–3040.

[11] Lili Mou et al. “Convolutional neural networks over
tree structures for programming language processing”.
In: Thirtieth AAAI conference on artificial intelligence.
2016.

[12] Krzysztof Choromanski et al. Rethinking Attention with
Performers. eprint: 2009.14794. 2020.

[13] Jinwoo Kim et al. Pure Transformers are Powerful
Graph Learners. July 6, 2022. DOI: 10.48550/arXiv.
2207.02505. arXiv: 2207.02505[cs]. URL: http://arxiv.
org/abs/2207.02505 (visited on 09/04/2022).

[14] Devin Kreuzer et al. Rethinking Graph Transformers
with Spectral Attention. Number: arXiv:2106.03893.
Oct. 27, 2021. DOI: 10.48550/arXiv.2106.03893. arXiv:
2106.03893[cs]. URL: http://arxiv.org/abs/2106.03893
(visited on 06/17/2022).

[15] Vijay Prakash Dwivedi and Xavier Bresson. A Gener-
alization of Transformer Networks to Graphs. Number:
arXiv:2012.09699. Jan. 24, 2021. DOI: 10.48550/arXiv.
2012.09699. arXiv: 2012.09699[cs]. URL: http://arxiv.
org/abs/2012.09699 (visited on 06/17/2022).

[16] Chengxuan Ying et al. Do Transformers Really Perform
Bad for Graph Representation? Nov. 23, 2021. DOI: 10.
48550/arXiv.2106.05234. arXiv: 2106.05234[cs]. URL:
http://arxiv.org/abs/2106.05234 (visited on 10/10/2022).

[17] Paul Mooney Julia Elliott. 2021 Kaggle Machine Learn-
ing & Data Science Survey. 2021. URL: https://kaggle.
com/competitions/kaggle-survey-2021.

[18] Martin P. Robillard. “What Makes APIs Hard to Learn?
Answers from Developers”. In: IEEE Software 26.6
(2009), pp. 27–34. DOI: 10.1109/MS.2009.193.

[19] Martin P. Robillard and Robert Deline. “A field study
of API learning obstacles”. In: Empirical Softw. Engg.
16.6 (Dec. 2011), pp. 703–732. ISSN: 1382-3256. DOI:
10.1007/s10664-010-9150-8. URL: https://doi.org/10.
1007/s10664-010-9150-8.

[20] Minhaz F. Zibran, Farjana Z. Eishita, and Chanchal
K. Roy. “Useful, But Usable? Factors Affecting the
Usability of APIs”. In: 2011 18th Working Conference
on Reverse Engineering. 2011, pp. 151–155. DOI: 10.
1109/WCRE.2011.26.

[21] Nabeel Alzahrani et al. “Python Versus C++: An Anal-
ysis of Student Struggle on Small Coding Exercises in
Introductory Programming Courses”. In: Proceedings
of the 49th ACM Technical Symposium on Computer
Science Education. SIGCSE ’18. Baltimore, Maryland,
USA: Association for Computing Machinery, 2018,
pp. 86–91. ISBN: 9781450351034. DOI: 10 . 1145 /
3159450 . 3160586. URL: https : / / doi . org / 10 . 1145 /
3159450.3160586.

[22] Lars Reimann and Günter Kniesel-Wünsche. Safe-DS:
A Domain Specific Language to Make Data Science
Safe. 2023. arXiv: 2302.14548 [cs.SE].

[23] Pyre: A performant type-checker for Python 3. URL:
https://pyre-check.org (visited on 05/12/2024).

[24] PyType: A static type analyzer for Python code. URL:
https : / / github . com / google / pytype (visited on
05/12/2024).

[25] Miltiadis Allamanis et al. “Typilus: Neural Type Hints”.
In: PLDI. 2020.

[26] Amir M. Mir et al. “Type4py: Deep similarity learning-
based type inference for python”. In: arXiv preprint
arXiv:2101.04470 (2021).

[27] Kesu Wang et al. “Unified Abstract Syntax Tree Repre-
sentation Learning for Cross-Language Program Clas-
sification”. In: Proceedings of the 30th IEEE/ACM
International Conference on Program Comprehension.



May 16, 2022, pp. 390–400. DOI: 10.1145/3524610.
3527915. arXiv: 2205.00424[cs]. URL: http://arxiv.org/
abs/2205.00424 (visited on 11/04/2022).

[28] Ze Tang et al. AST-Transformer: Encoding Abstract
Syntax Trees Efficiently for Code Summarization.
Dec. 2, 2021. DOI: 10.48550/arXiv.2112.01184. arXiv:
2112.01184[cs]. URL: http://arxiv.org/abs/2112.01184
(visited on 11/04/2022).

[29] Zeyu Sun et al. “Treegen: A tree-based transformer
architecture for code generation”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 34.
Issue: 05. 2020, pp. 8984–8991.

[30] Fabian Yamaguchi et al. “Modeling and Discover-
ing Vulnerabilities with Code Property Graphs”. In:
2014 IEEE Symposium on Security and Privacy. 2014,
pp. 590–604. DOI: 10.1109/SP.2014.44.

[31] Jiahao Liu et al. “Learning Graph-based Code Repre-
sentations for Source-level Functional Similarity Detec-
tion”. In: 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering (ICSE). 2023, pp. 345–
357. DOI: 10.1109/ICSE48619.2023.00040.

[32] Michael Pradel et al. “TypeWriter: neural type predic-
tion with search-based validation”. In: Proceedings of
the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Founda-
tions of Software Engineering. ESEC/FSE 2020. Virtual
Event, USA: Association for Computing Machinery,
2020, pp. 209–220. ISBN: 9781450370431. DOI: 10 .
1145/3368089.3409715. URL: https://doi.org/10.1145/
3368089.3409715.

[33] Kevin Jesse, Premkumar T. Devanbu, and Toufique
Ahmed. “Learning type annotation: is big data enough?”
In: Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineer-
ing. ESEC/FSE 2021. Athens, Greece: Association for
Computing Machinery, 2021, pp. 1483–1486. ISBN:
9781450385626. DOI: 10.1145/3468264.3473135. URL:
https://doi.org/10.1145/3468264.3473135.

[34] Yun Peng et al. Generative Type Inference for Python.
2023. arXiv: 2307.09163 [cs.SE].

[35] Jessica Schrouff et al. “Inferring javascript types
using graph neural networks”. In: arXiv preprint
arXiv:1905.06707 (2019).

[36] Zihan Liu et al. NER-BERT: A Pre-trained Model for
Low-Resource Entity Tagging. 2021. arXiv: 2112.00405
[cs.CL].

[37] Harshil Darji, Jelena Mitrović, and Michael Gran-
itzer. “German BERT Model for Legal Named Entity
Recognition”. In: Proceedings of the 15th Interna-
tional Conference on Agents and Artificial Intelligence.
SCITEPRESS - Science and Technology Publications,
2023. DOI: 10 . 5220 / 0011749400003393. URL: http :
//dx.doi.org/10.5220/0011749400003393.

[38] David Bieber et al. Static Prediction of Runtime Er-
rors by Learning to Execute Programs with Exter-

nal Resource Descriptions. 2022. arXiv: 2203 . 03771
[cs.LG].

[39] Shiyu Sun et al. Exploring Security Commits in Python.
2023. arXiv: 2307.11853 [cs.CR].

[40] Van-Anh Nguyen et al. “ReGVD: Revisiting Graph
Neural Networks for Vulnerability Detection”. In: arXiv
preprint arXiv:2110.07317 (2021).

[41] Zhen Li et al. “Vuldeepecker: A deep learning-based
system for vulnerability detection”. In: arXiv preprint
arXiv:1801.01681 (2018).

[42] Sicong Cao et al. “Bgnn4vd: constructing bidirectional
graph neural-network for vulnerability detection”. In:
Information and Software Technology 136 (2021). Pub-
lisher: Elsevier, p. 106576.

[43] Zhen Li et al. “SySeVR: A Framework for Using Deep
Learning to Detect Software Vulnerabilities”. In: IEEE
Transactions on Dependable and Secure Computing
(2021). Conference Name: IEEE Transactions on De-
pendable and Secure Computing, pp. 1–1. ISSN: 1941-
0018. DOI: 10.1109/TDSC.2021.3051525.

[44] Rebecca Russell et al. “Automated vulnerability detec-
tion in source code using deep representation learning”.
In: 2018 17th IEEE international conference on ma-
chine learning and applications (ICMLA). IEEE, 2018,
pp. 757–762.

[45] Qiaoyu Tan et al. MGAE: Masked Autoencoders for
Self-Supervised Learning on Graphs. 2022. arXiv:
2201.02534 [cs.LG].

[46] Sixiao Zhang et al. Graph Masked Autoencoders with
Transformers. 2022. arXiv: 2202.08391 [cs.LG].

[47] Zhenyu Hou et al. GraphMAE: Self-Supervised Masked
Graph Autoencoders. 2022. arXiv: 2205 . 10803
[cs.LG].

[48] S. Chopra, R. Hadsell, and Y. LeCun. “Learning a
similarity metric discriminatively, with application to
face verification”. In: 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion (CVPR’05). Vol. 1. 2005, 539–546 vol. 1. DOI:
10.1109/CVPR.2005.202.

[49] Wentong Liao et al. Triplet-based Deep Similarity
Learning for Person Re-Identification. 2018. arXiv:
1802.03254 [cs.CV].

[50] T. Cover and P. Hart. “Nearest neighbor pattern classi-
fication”. In: IEEE Transactions on Information Theory
13.1 (1967), pp. 21–27. DOI: 10 . 1109 / TIT . 1967 .
1053964.

[51] Sindhu Tipirneni, Ming Zhu, and Chandan K. Reddy.
StructCoder: Structure-Aware Transformer for Code
Generation. June 10, 2022. DOI: 10.48550/arXiv.2206.
05239. arXiv: 2206.05239[cs]. URL: http:/ /arxiv.org/
abs/2206.05239 (visited on 10/11/2022).

[52] Rohan Bavishi, Michael Pradel, and Koushik Sen. Con-
text2Name: A Deep Learning-Based Approach to Infer
Natural Variable Names from Usage Contexts. 2018.
arXiv: 1809.05193 [cs.SE].



[53] Aiping Zhang et al. “Efficient transformer with code
token learner for code clone detection”. In: J. Syst.
Softw. 197.C (Mar. 2023). ISSN: 0164-1212. DOI: 10.
1016/j.jss.2022.111557. URL: https://doi.org/10.1016/j.
jss.2022.111557.

[54] Wenhan Wang et al. “Detecting code clones with graph
neural network and flow-augmented abstract syntax
tree”. In: 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2020, pp. 261–271.

[55] Jitendra Yasaswi, Suresh Purini, and C.V. Jawahar. “Pla-
giarism Detection in Programming Assignments Using
Deep Features”. In: 2017 4th IAPR Asian Conference on
Pattern Recognition (ACPR). 2017, pp. 652–657. DOI:
10.1109/ACPR.2017.146.

[56] Alec Radford et al. “Language models are unsupervised
multitask learners”. In: OpenAI blog 1.8 (2019), p. 9.

[57] Tom Brown et al. “Language models are few-shot learn-
ers”. In: Advances in neural information processing
systems 33 (2020), pp. 1877–1901.

[58] Antonio Valerio Miceli Barone and Rico Sennrich.
“A parallel corpus of python functions and documen-
tation strings for automated code documentation and
code generation”. In: arXiv preprint arXiv:1707.02275
(2017).

[59] Xuye Liu et al. “HAConvGNN: Hierarchical attention
based convolutional graph neural network for code
documentation generation in jupyter notebooks”. In:
arXiv preprint arXiv:2104.01002 (2021).

[60] Sahil Bhatia and Rishabh Singh. “Automated correc-
tion for syntax errors in programming assignments
using recurrent neural networks”. In: arXiv preprint
arXiv:1603.06129 (2016).

[61] Alexandru Marginean et al. “Sapfix: Automated end-
to-end repair at scale”. In: 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering: Soft-
ware Engineering in Practice (ICSE-SEIP). IEEE, 2019,
pp. 269–278.

[62] Ahmad Khajenezhad et al. Gransformer: Transformer-
based Graph Generation. 2022. arXiv: 2203 . 13655
[cs.LG].

[63] Rocı́o Cabrera Lozoya et al. “Commit2vec: Learn-
ing distributed representations of code changes”. In:
SN Computer Science 2.3 (2021). Publisher: Springer,
pp. 1–16.

[64] P. S. Kostenetskiy, R. A. Chulkevich, and V. I. Kozyrev.
“HPC Resources of the Higher School of Economics”.
In: Journal of Physics: Conference Series 1740.1 (Jan.
2021). Publisher: IOP Publishing, p. 012050. ISSN:
1742-6596. DOI: 10.1088/1742-6596/1740/1/012050.
URL: https://doi.org/10.1088/1742-6596/1740/1/012050
(visited on 03/21/2022).


