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Abstract—In the era of deep learning, global-local deep neu-
ral networks are gradually replacing statistical approaches
for time-series forecasting, especially for the spatiotemporal
modelling field. However, the development of such methods
is hindered by the lack of open benchmark datasets in this
research domain. Generating synthetic data is an alternative
solution to data collection, but previous methods focus only
on generating uncorrelated independent time series. In this
work, we present a method for spatially correlated time-series
generation. It uses a set of parametric autoregressive models
for univariate time series generation in combination with the
approach for sampling model parameters which allows one to
simulate spatial relationships. We describe its implementation
and conduct experiments showing the validity of the data for
spatiotemporal modelling.

Index Terms—time-series generation, spatiotemporal mod-
elling, autoregressive model

1. Introduction

Time series are widely used in numerous domains, in-
cluding forecasting financial data, examining road traffic
patterns, predicting weather conditions, identifying anoma-
lies in the network traffic, etc. [1]. In recent years a lot
of time series datasets have been published in open source.
Competitions focused on the time series forecasting became
popular [2], [3]. There is also a growing interest in tasks as-
sociated with time series, such as hierarchical forecasting [4]
and spatiotemporal modeling [5].

However, there are several problems in the time series
analysis field. Time series presented in many open datasets
are quite homogeneous. Their application for evaluating
the effectiveness of predictive models is limited [6]. Ad-
ditionally, it is often difficult (or even impossible) to find
open datasets for certain tasks [1]. Therefore, methods for

generating time series can help create additional data not
only to improve the training process of currently popular
global neural network models for time series forecasting
but also to create benchmark datasets suitable for their
comprehensive testing. Examples of such models include
both global models, like Informer, FEDformer, TFT, as
well as foundation models like TimeGPT, TimesNet, and
TimeLLM (see reviews [7], [8]).

Methods for time series generation can be divided into
two groups: statistical and neural network-based [9]. In
the first group, the autoregressive approach is a popular
choice. In the second group, methods are often based on
the application of generative adversarial networks (GANs)
or variational autoencoders (VAEs). Thus, the methods of
the first group use parameterized autoregressive models to
generate time series. Methods of the second group use neural
network models that are trained to generate time series from
random noise based on existing datasets. The first approach
is implemented in such tools as GRATIS [6], timeseries-
generator [10], and mockseries [11]. The second is widely
used in fields with a lot of real observations, e.g. economics
and finance [12].

Nevertheless, the overwhelming majority of existing so-
lutions lack support for generating correlated time series.
These time series are often observed in tasks involving
spatiotemporal dependencies between time series and the
objects that generate them. For example, in road traffic
intensity forecasting, sensors installed on roads measure the
number of passing vehicles and/or their average speed. The
corresponding time series between adjacent crossroads often
exhibit strong correlation, which can be used to improve the
forecasting quality, for example, using spatiotemporal graph
neural networks (STGNN) [13]. The emergence of open
traffic datasets, such as PEMS-BAY and METR-LA [5], has
allowed researchers to standardize the way they compare
their models. This has significantly accelerated progress in



the development of modelling spatiotemporal relationships.
However, similar types of relationships are encountered in
many other areas, such as telecommunications, neurobi-
ology, epidemiology, meteorology, and others. Yet, at the
current moment, in many fields, either open datasets are
completely absent, or they are insignificant in size. This fact
once again confirms the necessity of developing methods for
time series generation.

Moreover, time series analysis is not limited to predic-
tion alone. Different tasks such as anomaly detection in
observations, searching for causal relationships, and adap-
tive prediction of time series that allow changes in value
distributions currently attract significant interest.

This paper presents a method for generating time series
with spatial dependencies, generated by a set of objects (e.g.,
sensors on roads or cellular base stations). Time series are
generated using a set of classical parameterized autoregres-
sive models, such as ETS [14]. Spatiotemporal relationships
are modelled by sampling process parameters. The prox-
imity of objects, determined e.g. by Euclidean or geodesic
distances on some manifold in parameter space corresponds
to the similarity of autoregressive model parameters. The
closer the process parameters are, the more similar the time
series are to each other.

The paper is structured as follows. Section 2 describes
existing approaches to time series generation. In Section 3,
the method for generating time series with spatial depen-
dencies is presented. The implementation of the method is
described in Section 4. Section 5 contains an evaluation of
the generator’s results. In the conclusion, the results of the
work and further research plans are outlined.

2. Related Works

Methods for time series generation can be divided into
the following groups: statistical (autoregressive) and neural
network-based. An overview of modern neural network
approaches to time series generation is presented in the
work [9]. The method described in this paper belongs to
autoregressive approaches. In this section, we review several
existing methods and open-source projects which fall into
this group.

The method for generating time series with diverse con-
trolled characteristics GRATIS [6] utilizes Gaussian mixture
autoregressive (MAR) models. Tuning the parameters of
these models allows for the generation of a time series
with desired features. GRATIS generates realistic datasets
necessary for research tasks such as forecasting comparison,
model training on generated data, and others. Thus, the
method provides an efficient benchmarking tool but does
not consider the generation of a set of spatially correlated
time series.

In [15], a method is proposed to generate synthetic time
series for simulation, control, and optimization tasks for hy-
brid energy systems. Fourier series and ARMA models were
trained on real measurements, and are then employed to
generate time series. In addition to generating independent

time series, the method offers a way to obtain synthetic cor-
related time series based on correlated input data. However,
this method only partially meets the goals of the work. The
correlation of time series is fully determined by the training
data and applied to the entire resulting system whereas
the concept of spatial correlation only implies correlation
between those time series generated by similar objects.

In addition to the methods described above, there are
several open-source tools for time series generation. A lot
of them are Python libraries for time series generation based
on various stochastic processes. A process here is defined as
some function that describes the behaviour of series values
over time. However, these solutions do not support speci-
fying spatial dependencies. Thus, such methods are only of
interest because of the implemented processes, generation
methods, and solution design. This paper considers two such
packages: timeseries-generator [10] and mockseries [11].

The Python package timeseries-generator is widely
known, providing the ability to generate synthetic time
series. The authors propose the following implementation. A
time series is represented as ts = v0 ·f1 ·f2 ·...·fN+u, where
v0 is the initial value, f1, ..., fN are integer factors reflecting
the characteristics of the time series (trend, seasonality, and
others), and u is random noise. This tool supports specifying
time series features such as trend and seasonality and allows
users to simulate changes in observations related to real
events (weekends, holidays, and others). Nevertheless, this
package does not support the usage of an external dataset
to parameterize stochastic processes and only one user-
defined model is used for time series generation. Thus, the
timeseries-generator package contains effective methods for
generating time series but does not meet all the requirements
of our study.

Another Python package providing flexible capabilities
for creating time series is mockseries. It has more compo-
nents than timeseries-generator and represents time series as
an additive or multiplicative combination of various signals
(trend, seasonality, noise, and several others). For example,
yt = (S1(t) · Tl(t) + S2(t)) · u, where S1(t), S2(t) are
different seasonal components, Tl(t) is a linear trend, and
u is random noise [16]. Moreover, the package implements
methods for changing time series values at specified time
points or over a specified time interval. Such a method
allows users to simulate anomalies and change time series
values over a specified interval according to a certain func-
tion. Thus, using the mockseries tool, a set of time series
with characteristics changing over time can be generated.

In conclusion, there appear to be no methods that can
generate a set of time series with spatial dependencies. There
might be no suitable software tools to address the issue.

3. Generation Method

The proposed method for generating time series consists
of the following:

• a set of stochastic processes supporting parameter-
ization, such as ETS (error, trend, seasonal) [14])
family;



Figure 1. Time series generation scheme

• generation of a schedule, i.e. a mechanism for cre-
ating complex time series models;

• generation of points with a clustered division on the
sphere as a time series source;

• process parameterization method.

The generation scheme is shown in Figure 1.

3.1. Stochastic Processes

Stochastic processes are the functions that determine
the behaviour of a time series and include a component of
random error. They describe the growth, decline, stationarity,

seasonality, dispersion, and other characteristics of the time
series. Processes allow for the computation of a new value
in the series based on several previous ones. Time series
created by the same sequence of processes are expected to
be similar.

In our method, the process is represented as follows:
p = f(Xt, Xt−1, ..., Xt−l, ξ; θ), where Xt, Xt−1, ..., Xt−l

are the set of previous values in the series, θ is the parameter
vector, and ξ is the random error component [17]. Thus, the
time series becomes a sequence of values from a process
list. At the start of each time series generation, the empty
sequence is filled with a small set of random initial data.
This set size is equal to the number of values that first
process requires. Processes then use the required number of
previous values and add their generated data to the sequence.

The method uses ETS models (Error, Trend and Sea-
sonality) to ensure the generated time series resembles real
data. In the implementation of the time series generator, all
ETS models are additive, represented as a sum of several
components:

ts = a · L(t) + b · T (t) + c · Sl(t) + d · U(t),

where L(t) is the long-term component, T (t) is the trend,
Sl(t) is the seasonal component with frequency l, and U(t)
is the random error [14]. Parameters a, b, c, d ∈ N denote
the number of components of the corresponding type, which
the user specifies.

3.2. Time Series Schedule Generator

A schedule is an order of processes, each associated
with a sequence of parameters. The order of processes is
a sequence of pairs (processi, stepsi), where processi is a
randomly selected process from the list of available process
types, and stepsi ∈ N is the number of time steps allocated
for the process. Let k specify the number of pairs in the
sequence, and n be the total number of observations in the

time series. Then we have
k∑

i=1

stepsi = n.

For each pair (processi, stepsi), we generate an-
other sequence of pairs (stepsij , parametersij), where
parametersij is the set of parameters of the process, and
stepsij is the number of steps allocated to the process
to work with this set of parameters. If q determines the
number of pairs in the parameter sequence, then we have
q∑

j=1

stepsij = stepsi.

3.3. Source Data Generation

In previous sections, we described the generation of
uncorrelated time series. To update the method with spatial
correlations, we first need to obtain a set of initial parameter
sets for the generator, each representing an object. Sensors
installed on roads may be treated as objects, the physical
location of each acting as a parameter, as described in



Section 1. The closer the sensors are placed, the more similar
their time series will be. Using the spatial relationships
between objects, one can unite the objects into a graph
based on Euclidean distances. In the current implementation,
points from the space R3 are used as objects, and their
coordinates naturally serve as parameters of the points.

Points are sampled and clustered with the k-means
method on the unit sphere centred at x = 0. The cluster
structure of objects allows for the parametrization of a
complex time series model. For each cluster, a schedule
is generated, and all objects generate time series using the
schedule of the parent cluster. In our method, the parent
cluster fully defines the schedule parameters for each object.

3.4. Process Parametrization

We propose a parameterization method to allow the time
series to depend on the characteristics of the parent object. If
the characteristics of objects are similar, a time series will be
generated from sets of processes with close parameters. One
challenge of parameterization is the transformation of char-
acteristics into process parameters: the dimensionality may
vary, specific limitations exist for many parameters, etc. This
issue can be addressed with the following approaches. One
is to treat characteristics as parameters in order and adjust
them to the required range. If the number of parameters is
not enough, use additional aggregated values. Another way
is to aggregate all the characteristics and use the resulting
value to generate all process parameters. This approach is
used in the current implementation.

Time series generated from the parameters chosen ran-
domly may be unstable. The user needs to specify the
following hyperparameters: the range [a, b] and the number
of intervals m. Additionally, the method can use generated
source data to calculate these parameters. Suppose the input
data is the set of points in space R3. In that case, the param-
eter a is considered a minimum value over all coordinates,
and the parameter b is a maximum. Process parameters and
initial values of the time series are generated concerning
these constraints.

The main aggregation function used is the weighted
arithmetic mean with a sum of weights equal to 1. The
aggregation function considers the order of coordinates
and allows for smoothing of the values. Other aggrega-
tion functions are the sum, maximum and minimum of all
values, allowing one to parametrise the processes with up
to 4 parameters. The set of aggregation functions may be
extended with the skewness, kurtosis, quantiles and other
parameters. However, high-dimensional parameter spaces
are either unreachable, or all the parameters will be similar,
as the results or aggregation functions are correlated.

Let A = (a1, a2, a3) ∈ R3 be a point, amw is the
weighted arithmetic mean of A, am is the maximum value
of A. Consider the following examples of parameter calcu-
lations:

• standard deviation,
• coefficient of the time series level,

• trend coefficient,
• seasonality coefficient.

Consider the standard deviation being a parameter for
all processes. Let’s denote it as σ. Let s = |b−a|

m , where
a, b,m are hyperparameters described above. In the current
implementation, the formula for calculating the standard
deviation looks as follows: σ = s′ + k, where k ∼ N(0, s

2 ).
If no source data is passed to the process, then s′ = s,
otherwise s′ = s · (1 + amw

am
).

The time series level is a separate time series component,
i.e. it does not depend on the trend and seasonality. It is
present in the simple exponential smoothing and Holt/Holt-
Winters models. The smoothing parameter α ∈ [0, 1] of the
level determines the weight of the last points in calculating
the new value of the time series. In the current implemen-
tation, α belongs to the interval (0, 0.3) so generated time
series using the simple exponential smoothing model are
stationary [17].

The trend component (T (t)) is present in the Holt and
Holt-Winters models. The trend coefficient β ∈ [0, 1] is the
smoothing parameter responsible for the extent to which
the time series exhibits growth or decline. If no source data
is passed to the process, then β ∼ U [0, 0.05], otherwise
β = amw

20·am
.

The seasonal component (S(t)) is used in the Holt-
Winters model. Similarly to the trend, it has a coefficient
γ ∈ [0, 1], a smoothing parameter determining the impact
of seasonal patterns on the generation [18]. An empirical
rule for γ is γ ∈ [0.5, 1], as with γ < 0.5, the seasonal
component of the time series becomes barely discernible. If
no source data is passed to the process, then γ ∼ U [0.5, 1],
otherwise γ = 1− amw

2·am
.

4. Implementation

The implementation of the application was divided into
two parts: creating a time series generator that supports
complex user-defined or random models, and incorporating
parameterization of stochastic processes that generate time
series based on input data.

The scenario of time series generation looks as follows.

1) Setting hyperparameters by the user, initializing the
generator.

2) Creating a schedule for all time series, either col-
lectively or for each individually (depending on the
configured parameters).

3) Generating time series according to the schedule.
4) Adding time series to the resulting list.

To implement the time series simulator, the following
technologies were used:

• Python 3.10 [19];
• NumPy [20];
• matplotlib [21];
• scikit-learn [22].

The class diagram is shown in the Figure A. The implemen-
tation code is available in the repository on GitHub: [23].



5. Evaluation

To assess the quality of the generator’s performance,
experiments were conducted on sampling points on the
sphere and generating corresponding time series. They were
conveyed in the following environment:

• CPU: AMD Ryzen 7 3750H with Radeon Vega
Mobile Gfx 2.30 GHz

• RAM: 16GB
• OS: Windows 10 (64-bit)
The experiments consisted of generating 5 points on a

sphere and 5 corresponding time series with 100 observa-
tions. The average time of a single generation is about 1-
2 seconds. Peak CPU load is about 40-50%, and memory
consumption is about 100MB.

5.1. Metrics

The quality criterion for the time series generator is
the similarity of the time series generated by close objects.
There is an algorithm to find optimal matches between time
sequences — Dynamic Time Warping (DTW). It is effec-
tive when comparing time series, one of which is shifted,
compressed, or stretched along the time axis relative to the
other. However, such an algorithm is not suitable for this
implementation of the generator. The resulting time series
may differ in dynamics and trend direction, even if they
are based on the same model. Thus, quality assessment is
carried out using visual comparison.

5.2. Results

In Figure 2, a plot of the time series returned by the
generator is presented on the left, and the location of the
points on the sphere that generated the time series is shown
on the right. Points belonging to the same cluster, along with
their corresponding time series, are marked with the same
colour.

The time series generated by the same schedule (cluster)
are distinguishable, i.e., they have similar dispersion and
common segments where the characteristics of the processes
and the stochastic processes themselves change. The closer
the points within the cluster, the closer their initial values
and the generated time series: this is reflected in the plots
where three time series from the same cluster are presented
– two series are similar, and the third differs from the pair
but still preserves a common behavioural model.

Different objects generate time series from own clusters,
so their behaviour is weakly correlated.

Nevertheless, the similarity of time series considering
the coordinates of points varies with each generation. In
some datasets, similar time series appear regardless of
the proximity of their parent objects. Thus, the generation
method has shown promise, but further testing is required.

One of the proposed applications of the generation
method is to mock the real data and use artificial data to pre-
train models for time series forecasting, i.e. data augmenta-
tion. The technique is currently being used for experiments

Figure 2. Results of the time series generator

with existing datasets with spatiotemporal correlations in
data, such as PEMS-BAY [24] and others (see section 1).
We create custom complex processes to mock the origin
data better, then train the time-series forecast models on the
synthetic data. We expect that after fine-tuning on the origin
data models will outperform their basic versions which were
not trained on the synthetic data. The example of custom
process is shown in the Figure B.

6. Conclusion and Future work

Within the scope of this work, an approach to generating
time series with spatial dependencies was presented. The
following results have been achieved.

1) A review of existing methods and software
implementations of time series generators based on
autoregressive processes was conducted: GRATIS,
Correlated synthetic time series generation,
timeseries-generator, mockseries.

2) A method for generating time series was developed,
including:

a) a set of stochastic processes generating time
series;

b) a method for constructing complex models
for time series generation;



c) a method for generating and clustering
points on a sphere;

d) a method for generating time series param-
eters depending on input data.

3) The method was implemented in software.
4) The generator’s performance has been tested.

In the further development of the method, the following
tasks are set: to implement various methods for sampling
points on arbitrary surfaces, to implement functions for
constructing a graph of relationships between objects and
approximating geodesic distances on surfaces, to describe
abstractions for changing process parameters, and to conduct
testing of new functions of the time series generator.
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TimeSeriesGenerator
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 generate_schedule()

AggregatedData
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calculate_weights() SchedulerStorage

num_steps: int

generator_linspace:
 GeneratorLinspace

points: NDArray

clusters: NDArray

create_storage()

get_cluster()

get_scheduler()

BaseParametersGenerator

lag: int

generator_linspace:
                GeneratorLinspace

aggregated_data:
                 AggregatedData

 generate_parameters()

 generate_init_values()

ProcessList

add_processes()

remove_processes()

get_processes()

get_random_processes()
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Appendix

1. Overall Generation Scheme

This scheme demonstrates the class architecture of the time series generator implementation in Python.



2. Second appendix

This graph demonstrates custom process that mocks origin data from dataset PEMS-BAY. All of the origin time series
are colored in green.

Figure 3. Custom process with the origin data (PEMS-BAY)


