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Abstract—The article addresses the issue of separating input
information of artificial neural networks into modules using
orthogonal transformations. This separation enables modular
organization of neural networks with layer separation, facilitating
the use of the proposed approach for distributed computing. Such
an approach is required for organizing the operation of neural
networks in fog and edge computing environments, as well as for
high-performance computing across multiple low-performance
computational nodes. The possibility of cross-layer separation
of artificial neural networks using orthogonal transformations
is theoretically substantiated, and practical examples of such an
approach are provided. A comparison of the characteristics of
modular neural networks using various types of orthogonal trans-
formations, including the Haar wavelet transform, is conducted.

Index Terms—orthogonal transformations, modular artificial
neural networks, neural network optimization, wavelet transfor-
mations

I. INTRODUCTION

The practical need to represent functions of n variables
as a superposition of functions from a smaller number of
variables arose due to the development of the theory and
practice of neural networks. The basis of Artificial Neural
Networks (ANN) is the Kolmogorov-Arnold theorem [1], [2],
which showed the possibility of representing a continuous real
function of n variables f(x1, x2, . . . , xn) as a superposition of
functions of a smaller number of variables.

A.N. Gorban [3] concludes that while the Kolmogorov-
Arnold theorem guarantees the exact representation of func-
tions of many variables in the class of continuous functions,
the practical computation of most functions is only approxi-
mate even when exact formulas are available. The solution lies
in approximating the function f(x1, x2, . . . , xn) on a compact
set Q using a sequence of polynomials (theorems of Weier-
strass, Stone). Furthermore, functions can be approximated
through linear operations and superpositions of one-variable
functions [3]. This approach gained popularity after the works
of McCulloch and Pitts [4], which predicted the emergence
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of ANN. The Hecht-Nielsen theorem [5] was a significant
advancement in ANN, demonstrating the possibility of approx-
imating a multi-variable function with a single hidden layer
ANN in a non-constructive manner. However, the single-layer
perceptron based on the Hecht-Nielsen theorem demonstrated
low efficiency.

The emergence of multilayer ANNs and the development
of methods for their training have made it possible to solve
problems of classification, extrapolation, feature extraction,
etc. under conditions of high uncertainty, i.e. to obtain sat-
isfactory results with a sufficiently small training sample size.
Due to the very rapid growth of the amount of data generated
and the need to process it, ANNs also increase in size and
require significant expenditure of computational resources.
Natural Language Processing (NLP) is of great interest and
also requires very large ANNs. For example, the popular GPT-
3 ANN created in 2020 uses 175 billion parameters. It is clear
that such ANNs require very high computational costs to run,
which can only be achieved in cloud data centres.

Simultaneously, there is an increasing demand for data
processing in close proximity to the equipment being used.
This demand has led to the rise of edge computing and fog
computing [6], which are becoming more popular due to their
enhanced information security and the limited communication
channels used for cloud computing. However, the computa-
tional nodes of fog computing typically lack the necessary
power to run ANNs. Therefore, ANNs must be optimized
by reducing the network size while only slightly degrading
performance. Furthermore, modular artificial neural networks
(ANNs) have been developed on multiple computational nodes
[7], [8], creating distributed computing structures. However,
the proposed ideas for modular ANNs are based on the
assumption that network layer separation is impossible [9], and
therefore rely on sequential separation into modules, one layer
at a time. However, this approach does not address the main
issue of resource estimation, as the number and performance
of available fog computing nodes are typically unknown
beforehand. The same problem arises when utilising a swarm
of unmanned aerial vehicles (UAV). A single vehicle, equipped



with a low-power computational node, cannot perform ANN
operations. By leveraging the computing capabilities of a UAV
swarm, it becomes feasible to operate ANNs of significant
size. In this case, it is crucial to optimize the amount of
information transferred between computational nodes. When
separating the ANN layer by layer, the amount of information
is significant due to the large number of parameters in each
layer.

Ahmed and Rao [10] present their approach to building
image recognition systems with optimal architecture. They
suggest using orthogonal transformations to optimize image
recognition algorithms, which reduces the number of signifi-
cant features and the size of the classifier, a forward propa-
gation ANN. The authors propose a concept of optimization
and partitioning into ANN modules based on this approach.

II. UTILIZING ORTHOGONAL TRANSFORMATIONS FOR
OPTIMIZATION OF NEURAL NETWORKS AND

MODULARIZATION

Dimensionality reduction is a transformation of data from
a high-dimensional dataset to a lower-dimensional vector by
eliminating uninformative features while preserving the struc-
ture and information contained within them to the maximum
extent possible [12]. This transformation typically involves
two steps: feature generation and selection [13]. In the first
step, features that most comprehensively describe the research
object are identified, while selection involves identifying fea-
tures with the best classification properties for the given task.
Commonly used methods for dimensionality reduction include
Principal Component Analysis (PCA) [14], Factor Analysis
(FA) [15], Linear Discriminant Analysis (LDA) [15], Singular
Value Decomposition (SVD) [16], Kernel PCA [17], Indepen-
dent Component Analysis (ISA) [18], Matrix Factorization
[19], among others. However, they all have a significant
drawback: dimensionality reduction requires preprocessing of
information, which can sometimes demand considerable time
and computational resources.

N. Ahmed and K. R. Rao [10] proposed optimizing the
structure of the input signal through orthogonal transforma-
tions, rather than the ANN architecture. This approach is of
interest because it allows for the realization of ANNs based
on existing principles, approaches, and libraries. By reducing
the amount of the input signal, it is possible to decrease the
size of the ANN. If the input signal is divided into modules,
processing can be carried out by several ANN modules.
The orthogonal transformations discussed in the works of N.
Ahmed and K. R. Rao can be considered as the first step, i.e.,
feature generation.

The method of orthogonal transformations is a well-known
technique associated with the concept of orthogonal functions.
A set of functions of a real variable, denoted by {di (t)} =
{d1, d2, . . . , di}, is considered orthogonal on the segment
[0;T ] if the following condition is satisfied:

T∫
0

di (t) dj (t) dt =

{
k if i = j,

0 if i ̸= pi.
(1)

where k is the autocorrelation coefficient of the function di (t).
If x (t) is a function of a real variable on the interval [0;T ],

it can be represented as a series

x (t) =

∞∑
n=1

andn (t). (2)

In (2), an represents the expansion coefficients, which can
be determined by

an =
1

k

T∫
0

x (t) dn (t) dt.

From the definition of a closed (complete) orthogonal set,
it can be inferred that a function x (t) can be represented
as a finite set of expansion coefficients {a0, a1, . . . , an} by
decomposing it into orthogonal functions. Even if the set of
orthogonal functions is not closed, a finite set of coefficients
can still be used. In this case, the representation of the function
x (t) is not exact, but rather an interpolation based on a certain
criterion. The most common criterion used is the least squares
principle, which is defined by the functional.

Φ =

∫ (
x (t)−

l∑
n=0

andn (t)

)2

. (3)

Once the value of the small ε has been determined, the
number of members of the series can be calculated so that the
condition Φ ≤ ε is satisfied.

The Fourier transform is a well-known orthogonal trans-
formation that is widely used in the theory of information
processing and transmission. It allows for the transition from
the time representation of a signal to the frequency repre-
sentation and vice versa. In this context, we will consider
the application of an orthogonal transformation based on the
Fourier transform [10], [11]. In some cases, functions such
as Lagger, Lejandre, Hermite, Walsh, Chebyshev, Adamar,
etc. may be more appropriate than trigonometric functions
as a kernel. As the input and output signals are represented
discretely, it is possible to use variants of the discrete Fourier
transform, including the Discrete Cosine Transform (DCT)
[10]. The DCT is commonly used in the JPEG format for
lossy image compression and operates exclusively with real
numbers. The DCT utilises a set of basis vectors in the form
of [10]

The DCT employs a set of basis vectors in the form of [10],
which is explored on the interval [0, π]:{

1√
n
,

√
2

n
cos

(2m+ 1)kπ

2n

}
. (4)

Here, k represents the harmonic (coefficient) number, and
m = 0, 1, 2, . . . , n−1, representing the size of the initial data
array. Equation (4) represents a class of discrete Chebyshev
polynomials [10]. The DCT has a notable property where
the basis vectors approximate the eigenvectors of the Toeplitz
matrices, allowing for effective compression of the original
signal using DCT. Therefore, applying an orthogonal transform



of the form (1) generates a set of coefficients. In the case
of the Fourier transform and its variant DCT, these coeffi-
cients represent the amplitudes of frequency harmonics. In
this case, the signal can be completely restored or restored
with a certain level of accuracy by summing the harmonic
components (inverse Fourier transform), depending on the
number of components summed.

For the second step (feature selection), N. Ahmed and K.
R. Rao [10] utilized the root-mean-square deviation (RMSD)
of coefficients in their studies. The higher the RMSD of a
coefficient, the more pronounced its classification capability.
However, this measure is inconvenient as it requires additional
processing, similar to other dimensionality reduction methods.
While the issue of orthogonal transformation in the first
layer of neural networks was addressed [23], a fundamentally
different approach is needed for real-time feature selection.

When transitioning to the investigation of a function pre-
sented in both time and frequency domains, it is necessary to
delineate the distinction in its reconstruction in each case. The
representation of a continuous function by discrete samples in
time is defined by the Whittaker-Kotelnikov-Shannon theorem
[20], which states that the sampling rate should exceed the
maximum frequency of the signal by a factor of two or
more. Each sample characterizes the instantaneous value of
the function at time ti. The expansion coefficient ai represents
the projection of the function onto the i-th orthogonal function
of the chosen basis over the interval [0;T ]. Moreover, a higher
value of ai indicates a closer affinity of the investigated
function to the i-th component. We shall employ the concept
of approximation accuracy for closed systems of orthogonal
functions [21]. Based on the Lyapunov-Steklov (Parseval)
equality:

B =

T∫
0

x2 (t) dt =

∞∑
n=0

a2n,

Then the relative integral accuracy of the approximation can
be estimated as

γ =

∑k
n=0 a

2
n

B
=

a20
B

+
a21
B

+ . . .+
a2n
B

. (5)

In (5), each term characterizes the contribution of each
projection to the formation of the original function. Based
on this, one can speak about the accuracy of approximating
a function obtained from a limited number of components
(coefficients).

Thus, an approximate function (γ < 1) can be used for
training ANNs, consequently reducing the size of the ANN.
From the course of mathematical analysis, there is a known
relationship between the smoothness of a function and the rate
of decrease of Fourier coefficients: if a function on an interval
has piecewise continuous derivatives of the first and higher
orders, then it converges to the original function absolutely
and uniformly [22]. Hence, it follows that the partial sums of
the coefficients decrease as the component harmonic numbers
increase. Therefore, dividing the spectrum can be divided into
two parts, based on equal number of frequencies, then we

obtain the following values of integral approximation accuracy
for each half of the spectrum:

γ1 =

∑k/2
n=0 a

2
n

B
, (6)

γ2 =

∑k
n=k/2+1 a

2
n

B
. (7)

Since the spectral density in (7) will be smaller than in (6),
the accuracy of approximation by the neural network trained
on the first part of the spectrum will be higher than that of the
second. This will be demonstrated experimentally in Section 3.
Depending on the problem being solved, the number of parts
into which the spectrum of the input function is divided may
vary. Additionally, the parts of the spectrum do not necessarily
have to be identical. If there are several computational nodes of
higher power, a larger portion of the spectrum can be allocated
to them using a larger size ANN.

By using wavelet transforms instead of Fourier-like trans-
forms, we can combine the operations of feature generation
and selection and obtain a gain in the number of relevant
features without additional research [24]. In general, wavelets
are a system of functions of the following form:

φa,b (x) =
√
2aφ(2ax− b). (8)

If Va is the space spanned by the system of functions (8),
then the following inclusions hold [25]: V0 ⊂ V1 ⊂ . . . ⊂ Va.
Thus, we obtain a sequence of nested subspaces Vi ⊂ L2(R),
each equipped with an orthonormal basis {φi,b(x)}. This
sequence of subspaces can be used to approximate a function
f (x) from L2(R) by its projection operator

Pa : L2 (R) → Va, Pa (f) =
∑
b∈Z

(f, φa,b)φa,b(x).

The projections Pi become increasingly accurate approxi-
mations of f (x) as i increases. Returning to neural networks,
the following analogy can be drawn. A set of input vectors
fi(xj) in the L2(R) space can be projected onto a set of
subspaces V0 ⊂ V1 ⊂ . . . ⊂ Va such that each projection
Pi is an approximation of the input data. By training a
neural network on the projections P0, we obtain the coarsest
approximation of the expected outcome. However, due to
decimation, this will be the most ”compact” approximation,
requiring minimal computational resources for operation.

The widely known Haar wavelet [10], [25], [26] allows for
partitioning the L2(R) space into two subspaces, V0 and V1.
By using V0 as the base subspace, a modular architecture
of neural networks can be constructed, enabling the use of
a basic module for low-power devices [24]. Essentially, the
Haar wavelet performs a partitioning of the coefficient space
into two equal parts [25], as previously proposed. This allows
for solving the problem as described above, where the basic
module facilitates the application of neural networks on low-
computational-power devices with minimal loss of accuracy
and without additional training. In practical applications of
the proposed theoretical principles, it is important to consider



that such transformation can be repeated for each half of the
coefficients. In this case, the entire space can be partitioned
into 4 parts and a 4-module structure can be formed, and so
forth.

Wavelet transformation divides the coefficient space into
several equal parts. However, if there exist nodes with high
computational capabilities in a distributed neural network,
multiple modules can be assigned to such a node. Conse-
quently, the computational load can be distributed more evenly.

The following conclusion can be drawn from this: orthog-
onal transformations allow you to divide the input signal
space into segments (modules). At the same time, due to (1)
modules can be processed independently of each other on
different nodes of a distributed computing system. Combining
the information processed on different nodes can be realised
due to the possibility of inverse orthogonal transformation.
However, due to the nonlinearity of ANN, the application
of the inverse transformation core is usually impossible and
requires training of the layer that combines the results of the
ANN modules. In this case, the training of the unifying layer
is possible together with the training of the modules.

Therefore, the implementation of distributed (modular)
ANN requires a number of computational nodes that corre-
sponds to the number of modules to be organised, as well as
two additional nodes: one to perform orthogonal transforma-
tion and another to combine the results of the modules. This
organization optimizes the amount of information transmitted
through communication channels. The amount of information
transmitted from the orthogonal transformation module to the
ANN modules is not greater than the amount of the input
signal. Additionally, the amount of information transmitted
from the modules to the unifying layer is l times greater
than the amount of output data of ANN, where l is the
number of modules in the ANN. All other information is
transmitted within the layers of the modules and does not
require communication channels.

III. PRACTICAL DEMONSTRATION OF OPTIMIZATION
POTENTIAL FOR ANNS AND CROSS-LAYER NETWORK
PARTITIONING FOR DEPLOYMENT ON EDGE AND FOG

COMPUTING NODES

Thus, by performing orthogonal transformation and dividing
the coefficients into modules, for example, with the help of
ideal digital filters, we obtain a group of feature modules,
which can be used to train several ANN modules. In this case,
each layer in the ANN modules is reduced proportionally to
the amount of the coefficient modules and does not require
from the computational node such a high performance that is
required for the ANN as a whole. The real discrete Fourier
transform and DCT were chosen for the experiment. The first
step is to evaluate the quality of ANN training in time and
frequency domains.

The PyTorch library [28] was used to implement the ANN,
with the MNIST database [30] serving as the training data. The
experiment was conducted on a personal computer running the

(a) ANN training in the time domain

(b) Training of ANN in the frequency
domain

Fig. 1: ANN learning processes in time and frequency domains
using the Fourier transform.

Windows 10 Home operating system, equipped with an Intel
Core i7-10510U processor and 16 GB of RAM.

Fig. 1 shows that training of ANN in the frequency domain
using Fourier transform takes 5 times more cycles than in the
time domain.

However, the application of DCT showed a slightly different
picture (Fig. 2). ANN training in the frequency domain out-
performed training in the time domain by only a factor of 2.
This can be explained by the compression properties of DCT
mentioned earlier.

The problems of optimisation and design of distributed
ANNs have a common solution: in optimisation, as many
modules are placed on a computing node as the node’s
computing power allows. And in the design of distributed
ANNs, the modules are placed on different nodes connected
by communication channels.

Consider the construction of modular ANNs. The first layer
performs an orthogonal transformation based on the weights
set and fixed in the neurons of the first layer [24]. Furthermore,
the transformation coefficients obtained after passing through
the first layer are divided into two equal parts and sent for
processing to different ANNs with layer sizes reduced by a
factor of 2. The outputs of the two ANNs are combined in a
layer with 20 inputs and 10 outputs. Fig. 3 shows the training
processes of the modular ANNs on MNIST data presented in
the frequency domain using Fourier transform (Fig. 3a) and
using DCT (Fig. 3b). The learning rate is approximately the
same and comparable to the learning rate of the monolithic



(a) ANN training in the time domain

(b) Training of ANN in the frequency
domain

Fig. 2: ANN learning processes in time and frequency domains
using DCT.

(a) Training of 2-module ANN (Fourier
transform)

(b) Training of the 2-module ANN (DCT)

Fig. 3: Learning processes of 2-module ANNs.

ANN in the frequency domain.
The characteristics of the modular ANNs obtained for op-

timisation and construction of distributed neural networks are
considered. Table I presents the characteristics of 2-modular
ANN.

TABLE I: Characteristics of the 2-module ANN

Recognition quality, % Average time of 1 cycle, sec
Module 1 79.63 0.029
Module 2 69.02 0.024

Table I confirms that the recognition quality of the second
module is lower than that of the first module. This is due to
the fact that the integral energy spectrum used to train the first
module was larger than that used for the second module.

Table II presents the characteristics of the four-module
ANN.

TABLE II: Characteristics of a 4-module ANN

Recognition quality, % Average time of 1 cycle, sec
Module 1 78.76 0.013
Module 2 37.39 0.012
Module 3 17.49 0.013
Module 4 20.86 0.012

Table II shows that the average execution time per cycle for
all modules is approximately the same, while the recognition
quality decreases as the module number increases. Module
4 is the exception, with recognition quality exceeding that
of module 3. This can be explained by the high-frequency
oscillations at the object boundaries, which cause the input
signal to the ANN to be not completely smooth.

Table III presents the characteristics of the 4-module ANN
when the modules are connected in turn.

TABLE III: Characteristics of ANN when several modules are
connected

Recognition quality, % Average time of 1 cycle, sec
Module 1 78.76 0.013
Module 2 94.01 0.017
Module 3 97.22 0.022
Module 4 98.05 0.028

Table III shows the improvement in ANN recognition
quality with the addition of modules. The average cycle time
increases at a slower rate than the number of connected
modules. Therefore, the time required for four modules is only
twice that of one module. This is due to the parallelism of the
modules working simultaneously.

The Haar wavelet transform is used as an orthogonal
transform for constructing a modular ANN. The procedure
for wavelet transformation involves passing the input signal



through a half-band digital filter with frequency response h (n)
(high-pass filter) or g (n) (low-pass filter) [25], [27]:

x (n) ∗ h (n) =
∑
k

x (k)h (n− k) ,

x (n) ∗ g (n) =
∑
k

x (k) g (n− k) .

If the input signal of the ANN is a one-dimensional series
of numbers with a length of n, we can obtain wavelet
transform coefficients at the output by using a one-dimensional
convolution layer with either kernel h (n) or g (n). To reduce
the number of ANN layers, we can use one layer with two or
more different kernels. To achieve this, we create a convolution
layer with one input, two or more outputs, and a step equal
to the dimensionality of the wavelet kernel. In this case, a
convolution layer will be created with two kernels, where the
values of h (n) and g (n) are inputted [25].

TABLE IV: Characteristics of 2-module ANN using wavelet
transform

Recognition quality, % Average time of 1 cycle, sec
Module 1 97.01 0.019
Module 2 53.12 0.019

The Haar wavelet transform, as shown in Table IV, dis-
tributes significant features in the frequency-time matrix more
strictly. This allows for the separate use of the first module
with ≈ 1% loss in accuracy. Additionally, the module’s speed
is slightly increased due to the use of the convolutional
layer as an orthogonal transformer. The use of wavelets for
constructing modular ANNs is discussed in more detail in [27].

IV. CONCLUSION

The article discusses the use of orthogonal transformations,
specifically the Fourier transform, discrete cosine transform,
and Haar wavelet transform, for constructing distributed modu-
lar ANNs. The approaches outlined in detail in [10] enable the
use of these transformations for training ANNs and dividing
the input vector into parts for modular network application.
The examples provided demonstrate the potential for optimis-
ing ANNs for use on low-performance computing devices.
They also enable the creation of distributed computing systems
with performance equal to that of a monolithic network.
The proposed approach is considered advantageous due to
its independence from the ANN architecture. This allows for
the separation of input information and a reduction in the
size of modules, which can be applied to any neural network
architecture using standard libraries.

ACKNOWLEDGMENT

The research was supported by the Russian Science Foun-
dation Grant No. 24-21-00149, https://rscf.ru/en/project/24-21-
00149/.

REFERENCES

[1] Kolmogorov A. N. O predstavlenii nepreryvnyh funkcij neskol’kih pere-
mennyh v vide superpozicij nepreryvnyh funkcij odnogo peremennogo
i slozheniya [On the representation of continuous functions of several
variables as superpositions of continuous functions of one variable
and addition]. Doklady Akademii nauk [Reports of the Academy of
Sciences], 1957, vol. 5, pp. 953-956 (In Russian).

[2] Arnol’d V. I. O predstavlenii funkcij neskol’kih peremennyh v vide
superpozicii funkcij men’shego chisla peremennyh [On the representa-
tion of functions of several variables as a superposition of functions
of a smaller number of variables]. Matematicheskoe prosveshhenie
[Mathematical education], 1958, vol. 3, pp. 41-61 (In Russian).

[3] Gorban’ A. N. Obobshchennaya approksimacionnaya teorema i vy-
chislitel’nye vozmozhnosti nejronnyh setej [Generalised approximation
theorem and computational capabilities of neural networks]. Sibirskij
zhurnal vychislitel’noj matematiki [Siberian Journal of Computational
Mathematics], 1998, vol. 1, pp. 11-24 (In Russian).

[4] McCulloch W. S., Pitts W. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 1943, vol. 5,
is.4, pp. 115-133.

[5] Hecht-Nielsen R. Neurocomputing. Addison-Wesley, 1989.
[6] Kirsanova A.A., Radchenko G.I., Chernykh A.N. Obzor tekhnologij

organizacii tumannyh vychislenij [Review of technologies of fog com-
puting organization]. Vestnik Yuzhno-Ural’skogo gosudarstvennogo uni-
versiteta [Bulletin of the South Ural State University], 2020, vol. 9, no.
3, pp. 35-63, DOI: 10.14529/cmse200303 (In Russian).

[7] Mao, J., Chen, X., Nixon, K.W., Krieger, C., Chen. MoDNN: Lo-
cal distributed mobile computing system for deep neural network.
Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017, Lausanne, Switzerland, 2017, pp. 1396-1401, doi:
10.23919/DATE.2017.7927211.

[8] Bakhtin V.V. Algoritm razdeleniya monolitnoj nejronnoj seti dlya real-
izacii tumannyh vychislenij v ustrojstvah na programmiruemoj logike
[Separation algorithm of the monolithic neural network for realization
of fog computing in devices on programmable logic], Vestnik PNIPU.
Elektrotekhnika, informacionnye tekhnologii, sistemy upravleniya [Bul-
letin of PNIPU. Series: Electrical engineering, information technolo-
gies, control systems, 2022, vol. 41, pp. 123-145, doi: 10.15593/2224-
9397/2022.1.06 (In Russian).

[9] Ushakov Y.A., Polezhaev P.N., Shukhman A.E., Ushakova M.V. Raspre-
delenie nejronnoj seti mezhdu mobil’nym ustrojstvom i servisami
oblachnoj infrastruktury [Distribution of the neural network between
mobile device and cloud infrastructure services]. Research and develop-
ment in the field of new IT and their applications, 2018, vol. 14, no.4.
pp. 903-910, doi: 10.25559/SITITO.14.201804.903-910 (In Russian).

[10] Ahmed N., Rao K.R. Ortogonal’nye preobrazovanija pri obrabotke
cifrovyh signalov [Orthogonal transforms for digital signal processing].
Moscow, Svjaz’ publ., 1980. (In Russian).

[11] Solodov A.V. Information theory and its application to the tasks of
automatic control and monitoring. Izdvo ”Nauka”, glav. red. fiziko-
matematicheskoj lit-ry [Publishing house ”Science”], 1967 (In Russian).

[12] Burges C.J.C. Dimension reduction: A guided tour. Foundetions and
Trends in Machine Learning, 2010, vol.2, no. 4, pp. 275-365, DOI:
10.1561/2200000002.

[13] Erohin S.D., Borisenko B.B., Martishin I.D., Fadeev A.S. Analiz sushch-
estvuyushchih metodov snizheniya razmernosti vhodnyh dannyh [Anal-
ysis of existing methods to reduce the dimensionality of input data].
T-Comm: Telekommunikacii i transport [T-Comm: Telecommunications
and Transport], 2022, vol. 16, no. 1. pp. 30-37 (In Russian).

[14] Jolliffe I.T. Principal component analisis. Second Edition, Springer,
2007, 487 p.

[15] Mardia K.V., Kent J.T., Bibby J.M. Multivariate analysis (Probability
and mathematical statistics). Academic Press Limited, 1995, 521 p.

[16] Stewart G.W. On the early history on the singular value decom-
position. SIAM Review, 1993, vol. 35, no. 4, pp. 551-566. DOI:
10.1137//1035134.

[17] Van Der Maaten L., Postm, E. O., Van den Herik H. J. Dimensionality
reduction: A comparative review. Journal of Machine Learning Research,
2009, vol. 10, 13 p.

[18] Hyvarinen A., Karhunen J., Oja E. Independent component analysis.
John Wiley and Sons, 2001, 504 p.

[19] Snasel V., Horak Z., Kocibova J., Abraham A. Reducing social network
dimensions using matrix factorization analysis. Proceedings of the 2009



International Conference on Advances in Social Network Analysis and
Mining, 2009, pp. 348-351. DOI: 10.1109/ASONAM.2009.48

[20] Jerry A. J. Teoriya otschetov SHennona, ee razlichnye prilozheniya i
obobshcheniya [Shannon’s reference theory, its various applications and
generalisations]. Obzor TIIER [Review TIIER], 1977, vol. 65, no. 11,
pp. 53 - 89 (In Russian).

[21] Dedus F.F., Kulikova L.I., Pankratov A.N., Tetuev R.K. Klassicheskie
ortogonal’nye bazisy v zadachah analiticheskogo opisaniya i obrabotki
informacionnyh signalov [Classical orthogonal bases in problems of
analytical description and processing of information signals]. FVMIK
MGU [FCMIC OF MSU], 2004, 168 p. (In Russian).

[22] Zorich V. A. Matematicheskij analiz [Mathematical analysis]. Izda-
tel’stvo Nauka, Glavnaya redakciya fiziko-matematicheskoj literatury
[Nauka Publishing House, Main Editorial Office of Physical and Math-
ematical Literature], 1984, pp. 637 (In Russian).

[23] Vershkov N.A., Kuchukov, V.A., Kuchukova, N.N., Babenko M., The
Wave Model of Artificial Neural Network. Proceedings of the 2020
IEEE Conference of Russian Young Researchers in Electrical and Elec-
tronic Engineering, EIConRus, 2020, pp. 542-547, DOI: 10.1109/EICon-
Rus49466.2020.9039172

[24] Vershkov, N., Babenko, M., Tchernykh, A., Kuchukov, V., Kucherov, N.,
Kuchukova, N., Drozdov, A. Y. Optimization of Artificial Neural Net-
works using Wavelet Transforms. Programming and Computer Software,
vol. 48, no. 6, pp. 376-384, https://doi.org/10.1134/S036176882206007X

[25] Smolencev N.K. Osnovy teorii vejvletov. Vejvlety v MATLAB [Funda-
mentals of wavelet theory. Wavelets in MATLAB]. DMK Press, 2019.
(In Russian).

[26] Haar A. Zur theorie der orthogonalen funktionensysteme. Georg-August-
Universitat, Gottingen, 1909.

[27] Vershkov N.A., Babenko M.G., Kuchukova N.N., Kuchukov V.A.,
Kucherov N.N. Transverse-layer partitioning of artificial neural networks
for image classification. Computer Optics, 2024, vol. 48, no. 2, pp. 312-
320. DOI: 10.18287/2412-6179-CO-1278.

[28] PyTorch. Source: https://pytorch.org/
[29] PyWavelets. Source: https://pypi.org/project/PyWavelets/
[30] Qiao Y. THE MNIST DATABASE of handwritten digits. 2007. Source:

http://www.gavo.t.utokyo.ac.jp/qiao/database.html.


